I've worked out the reasoning, but how do I write the proof?Advice for a newly minted math majorHow to write well in analysis (calculus)?Formal expression for a proofWhy do we choose |x+5|=10 in the following proof of quadratic limit?Using Squeeze Theorem to prove two sequences converge to same limitHow should I make my proof about the sum of all parts of a number?Prove if $lim_xto c f'(x) = K$ then $f'(c) = K$Big O notation True or FalseWhere is the flaw in this “proof” of the Collatz Conjecture?How to prove this delta-epsilon proof involving $x^2$?

How can a function with a hole (removable discontinuity) equal a function with no hole?

Crossing the line between justified force and brutality

You cannot touch me, but I can touch you, who am I?

Where does the Z80 processor start executing from?

How can I kill an app using Terminal?

Tiptoe or tiphoof? Adjusting words to better fit fantasy races

India just shot down a satellite from the ground. At what altitude range is the resulting debris field?

Short story about space worker geeks who zone out by 'listening' to radiation from stars

Pole-zeros of a real-valued causal FIR system

What is the best translation for "slot" in the context of multiplayer video games?

How does the UK government determine the size of a mandate?

How do scammers retract money, while you can’t?

How to run a prison with the smallest amount of guards?

Opposite of a diet

Purchasing a ticket for someone else in another country?

Different result between scanning in Epson's "color negative film" mode and scanning in positive -> invert curve in post?

Hostile work environment after whistle-blowing on coworker and our boss. What do I do?

How did Arya survive the stabbing?

How to pronounce the slash sign

Anatomically Correct Strange Women In Ponds Distributing Swords

Trouble understanding the speech of overseas colleagues

Was Spock the First Vulcan in Starfleet?

How can we prove that any integral in the set of non-elementary integrals cannot be expressed in the form of elementary functions?

What does the word "Atten" mean?



I've worked out the reasoning, but how do I write the proof?


Advice for a newly minted math majorHow to write well in analysis (calculus)?Formal expression for a proofWhy do we choose |x+5|=10 in the following proof of quadratic limit?Using Squeeze Theorem to prove two sequences converge to same limitHow should I make my proof about the sum of all parts of a number?Prove if $lim_xto c f'(x) = K$ then $f'(c) = K$Big O notation True or FalseWhere is the flaw in this “proof” of the Collatz Conjecture?How to prove this delta-epsilon proof involving $x^2$?













6












$begingroup$


This started our with a pretty trivial problem that went:




Fill in the blanks with whole numbers to make mathematically true statements. Do not use the same number twice within a statement.$$frac*4+frac1*=frac*20$$




Now solutions were pretty easy, so I decided to change the problem and asked myself what solutions could be made when I must use a number twice. Solutions were easy for this format $$fraca4+frac1a=fracb20$$ where $ane b$. But are there any solutions for the following format?
$$fracb4+frac1a=fraca20$$



To determine if there were any, I firstly rearranged the equation into a quadratic form, i.e.$$0=a^2-5ba+20$$ which yields solutions if $$a=frac5bpmsqrt25b^2-802$$Now this can only satisfy the condition of "whole numbers" if $sqrt25b^2-80$ is a whole number. (Even then there is more that needs to be satisfied, so this is a minimal condition.) At this point, I didn't know how to prove this formally, so I decided to use excel to determine $25b^2-80$ for different values of b, and then use the vlookup function to find the nearest square, $n^2$, below that value. I then subtracted these two values because I figured that I was looking for any instances where $$delta=25b^2-80-n^2equiv0$$ Now I didn't find any, however, I found an unexpected pattern for the difference, $delta$ given b=2, 3, ...



The value of $$delta = (4, 1, 31, 16, 36, 56, 76, 9, 19, 29, 39, ...)$$ That is, for $b>8$, $$delta =10(b-8)+9$$



I therefore have two questions. Why did this pattern emerge for $delta$? And how do you formally write this reasoning, which does show that no value of "$a$" exists that is a whole number?










share|cite|improve this question









$endgroup$











  • $begingroup$
    What were your $n$ value(s) in generating $delta$?
    $endgroup$
    – Eevee Trainer
    18 hours ago










  • $begingroup$
    You can also use the rational root theorem to restrict the possible solutions: If $0=a^2-5ba+20$ with integers $a,b$ then $a$ must be a divisor of $20$.
    $endgroup$
    – Martin R
    18 hours ago










  • $begingroup$
    Isn't it $a^2 - 5ab - 20 = 0$??
    $endgroup$
    – Balakrishnan Rajan
    17 hours ago










  • $begingroup$
    Can you write a more descriptive/informative title?
    $endgroup$
    – YuiTo Cheng
    15 hours ago















6












$begingroup$


This started our with a pretty trivial problem that went:




Fill in the blanks with whole numbers to make mathematically true statements. Do not use the same number twice within a statement.$$frac*4+frac1*=frac*20$$




Now solutions were pretty easy, so I decided to change the problem and asked myself what solutions could be made when I must use a number twice. Solutions were easy for this format $$fraca4+frac1a=fracb20$$ where $ane b$. But are there any solutions for the following format?
$$fracb4+frac1a=fraca20$$



To determine if there were any, I firstly rearranged the equation into a quadratic form, i.e.$$0=a^2-5ba+20$$ which yields solutions if $$a=frac5bpmsqrt25b^2-802$$Now this can only satisfy the condition of "whole numbers" if $sqrt25b^2-80$ is a whole number. (Even then there is more that needs to be satisfied, so this is a minimal condition.) At this point, I didn't know how to prove this formally, so I decided to use excel to determine $25b^2-80$ for different values of b, and then use the vlookup function to find the nearest square, $n^2$, below that value. I then subtracted these two values because I figured that I was looking for any instances where $$delta=25b^2-80-n^2equiv0$$ Now I didn't find any, however, I found an unexpected pattern for the difference, $delta$ given b=2, 3, ...



The value of $$delta = (4, 1, 31, 16, 36, 56, 76, 9, 19, 29, 39, ...)$$ That is, for $b>8$, $$delta =10(b-8)+9$$



I therefore have two questions. Why did this pattern emerge for $delta$? And how do you formally write this reasoning, which does show that no value of "$a$" exists that is a whole number?










share|cite|improve this question









$endgroup$











  • $begingroup$
    What were your $n$ value(s) in generating $delta$?
    $endgroup$
    – Eevee Trainer
    18 hours ago










  • $begingroup$
    You can also use the rational root theorem to restrict the possible solutions: If $0=a^2-5ba+20$ with integers $a,b$ then $a$ must be a divisor of $20$.
    $endgroup$
    – Martin R
    18 hours ago










  • $begingroup$
    Isn't it $a^2 - 5ab - 20 = 0$??
    $endgroup$
    – Balakrishnan Rajan
    17 hours ago










  • $begingroup$
    Can you write a more descriptive/informative title?
    $endgroup$
    – YuiTo Cheng
    15 hours ago













6












6








6


1



$begingroup$


This started our with a pretty trivial problem that went:




Fill in the blanks with whole numbers to make mathematically true statements. Do not use the same number twice within a statement.$$frac*4+frac1*=frac*20$$




Now solutions were pretty easy, so I decided to change the problem and asked myself what solutions could be made when I must use a number twice. Solutions were easy for this format $$fraca4+frac1a=fracb20$$ where $ane b$. But are there any solutions for the following format?
$$fracb4+frac1a=fraca20$$



To determine if there were any, I firstly rearranged the equation into a quadratic form, i.e.$$0=a^2-5ba+20$$ which yields solutions if $$a=frac5bpmsqrt25b^2-802$$Now this can only satisfy the condition of "whole numbers" if $sqrt25b^2-80$ is a whole number. (Even then there is more that needs to be satisfied, so this is a minimal condition.) At this point, I didn't know how to prove this formally, so I decided to use excel to determine $25b^2-80$ for different values of b, and then use the vlookup function to find the nearest square, $n^2$, below that value. I then subtracted these two values because I figured that I was looking for any instances where $$delta=25b^2-80-n^2equiv0$$ Now I didn't find any, however, I found an unexpected pattern for the difference, $delta$ given b=2, 3, ...



The value of $$delta = (4, 1, 31, 16, 36, 56, 76, 9, 19, 29, 39, ...)$$ That is, for $b>8$, $$delta =10(b-8)+9$$



I therefore have two questions. Why did this pattern emerge for $delta$? And how do you formally write this reasoning, which does show that no value of "$a$" exists that is a whole number?










share|cite|improve this question









$endgroup$




This started our with a pretty trivial problem that went:




Fill in the blanks with whole numbers to make mathematically true statements. Do not use the same number twice within a statement.$$frac*4+frac1*=frac*20$$




Now solutions were pretty easy, so I decided to change the problem and asked myself what solutions could be made when I must use a number twice. Solutions were easy for this format $$fraca4+frac1a=fracb20$$ where $ane b$. But are there any solutions for the following format?
$$fracb4+frac1a=fraca20$$



To determine if there were any, I firstly rearranged the equation into a quadratic form, i.e.$$0=a^2-5ba+20$$ which yields solutions if $$a=frac5bpmsqrt25b^2-802$$Now this can only satisfy the condition of "whole numbers" if $sqrt25b^2-80$ is a whole number. (Even then there is more that needs to be satisfied, so this is a minimal condition.) At this point, I didn't know how to prove this formally, so I decided to use excel to determine $25b^2-80$ for different values of b, and then use the vlookup function to find the nearest square, $n^2$, below that value. I then subtracted these two values because I figured that I was looking for any instances where $$delta=25b^2-80-n^2equiv0$$ Now I didn't find any, however, I found an unexpected pattern for the difference, $delta$ given b=2, 3, ...



The value of $$delta = (4, 1, 31, 16, 36, 56, 76, 9, 19, 29, 39, ...)$$ That is, for $b>8$, $$delta =10(b-8)+9$$



I therefore have two questions. Why did this pattern emerge for $delta$? And how do you formally write this reasoning, which does show that no value of "$a$" exists that is a whole number?







proof-writing






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked 18 hours ago









BrendanBrendan

462




462











  • $begingroup$
    What were your $n$ value(s) in generating $delta$?
    $endgroup$
    – Eevee Trainer
    18 hours ago










  • $begingroup$
    You can also use the rational root theorem to restrict the possible solutions: If $0=a^2-5ba+20$ with integers $a,b$ then $a$ must be a divisor of $20$.
    $endgroup$
    – Martin R
    18 hours ago










  • $begingroup$
    Isn't it $a^2 - 5ab - 20 = 0$??
    $endgroup$
    – Balakrishnan Rajan
    17 hours ago










  • $begingroup$
    Can you write a more descriptive/informative title?
    $endgroup$
    – YuiTo Cheng
    15 hours ago
















  • $begingroup$
    What were your $n$ value(s) in generating $delta$?
    $endgroup$
    – Eevee Trainer
    18 hours ago










  • $begingroup$
    You can also use the rational root theorem to restrict the possible solutions: If $0=a^2-5ba+20$ with integers $a,b$ then $a$ must be a divisor of $20$.
    $endgroup$
    – Martin R
    18 hours ago










  • $begingroup$
    Isn't it $a^2 - 5ab - 20 = 0$??
    $endgroup$
    – Balakrishnan Rajan
    17 hours ago










  • $begingroup$
    Can you write a more descriptive/informative title?
    $endgroup$
    – YuiTo Cheng
    15 hours ago















$begingroup$
What were your $n$ value(s) in generating $delta$?
$endgroup$
– Eevee Trainer
18 hours ago




$begingroup$
What were your $n$ value(s) in generating $delta$?
$endgroup$
– Eevee Trainer
18 hours ago












$begingroup$
You can also use the rational root theorem to restrict the possible solutions: If $0=a^2-5ba+20$ with integers $a,b$ then $a$ must be a divisor of $20$.
$endgroup$
– Martin R
18 hours ago




$begingroup$
You can also use the rational root theorem to restrict the possible solutions: If $0=a^2-5ba+20$ with integers $a,b$ then $a$ must be a divisor of $20$.
$endgroup$
– Martin R
18 hours ago












$begingroup$
Isn't it $a^2 - 5ab - 20 = 0$??
$endgroup$
– Balakrishnan Rajan
17 hours ago




$begingroup$
Isn't it $a^2 - 5ab - 20 = 0$??
$endgroup$
– Balakrishnan Rajan
17 hours ago












$begingroup$
Can you write a more descriptive/informative title?
$endgroup$
– YuiTo Cheng
15 hours ago




$begingroup$
Can you write a more descriptive/informative title?
$endgroup$
– YuiTo Cheng
15 hours ago










4 Answers
4






active

oldest

votes


















0












$begingroup$

You have several choices already for the proof, so I'll focus on the pattern of values of $delta.$
I think this is easier to reason about if we write the expression under the radical as $(5b)^2 - 80.$
In order for the radical to be a whole number, then,
we would need the difference between two squares to be $80,$
where one of the squares is a square of a multiple of $5.$



For small values of $b$ there can be one or more squares strictly between
$(5b)^2 - 80$ and $(5b)^2,$
so $delta$ ends up being the difference between $(5b)^2$ and $(5b - n)^2$
where $n geq 2.$ But



$$ (5b)^2 - (5b - 1)^2 = (5b)^2 - ((5b)^2 - 2(5b) + 1) = 10b - 1, $$



so if $b geq 9$ then the difference between $(5b)^2$ and the next smaller square is at least $89,$ which is greater than $80.$
Hence there are no squares at all in the numbers from $(5b)^2 - 80$ to $(5b)^2$
(other than $(5b)^2$ itself), so $delta$ is just the difference between
$(5b)^2 - 80$ and the next smaller square, which is $(5b - 1)^2$:



beginalign
delta &= ((5b)^2 - 80) - (5b - 1)^2 \
&= (10b - 1) - 80 \
&= 10(b - 8) - 1\
&= 10(b - 9) + 9.
endalign



(Note that this is slightly different from the formula written in the question.)



By the way, since we found while doing this that there are no squares at all in the numbers from $(5b)^2 - 80$ to $(5b)^2 - 1$ when $b geq 9,$
a corollary is that $(5b)^2 - 80$ is not a square, so after checking each case where $b < 9$ individually, you have shown that $(5b)^2 - 80$ cannot be a square.






share|cite|improve this answer











$endgroup$












  • $begingroup$
    Thanks to everyone who answered. I chose this answer for two reasons: Firstly it explained the emergence of the pattern behind $delta$, and secondly, it followed the original reasoning, which was what I requested.
    $endgroup$
    – Brendan
    2 hours ago


















4












$begingroup$

Note that $$bover 4+1over a=aover 20implies a^2=5ab+20implies a|20 , 5|a$$so all the possible cases are $$ain -20,-10,-5,5,10,20$$by a simple investigation, we conclude there are no integers $a,b$ such that $$bover 4+1over a=aover 20$$



P.S.



Generally, all the answers to the equation $$aover 4+1over b=cover 20$$are as follows$$(a,b,c)=left(a,b,5a+20over bright)$$with any arbitrary $ain Bbb Z$ and $b|20$.






share|cite|improve this answer











$endgroup$




















    0












    $begingroup$

    Note that $sqrt25b^2 - 80 $ is a whole number if and only if $25b^2 - 80$ is a square. This gives the equation
    $$ 25b^2 - 80 = a^2 implies a^2-25b^2 = 80 implies a^2-(5b)^2 = 80$$
    This can be factored as
    $$ (a-5b)(a+5b) = 80.$$
    Using the prime factorization of $80 = 2^4 cdot 5$ and that $a$ and $b$ are whole numbers, this results in a number of equation systems of the form
    $$ begincases a-5b = c_1 \ a+5b = c_2 endcases $$
    where $c_1$ and $c_2$ are whole numbers such that $c_1 c_2 = 80$ (there are $20$ such systems: ten positive and ten negative).



    Solving these will reduce your search to a finite number of possible solutions for $a$ and $b$, which you can sort out manually.






    share|cite|improve this answer









    $endgroup$




















      0












      $begingroup$

      So you have,
      $$
      fracb4 + frac1a = fraca20
      $$



      This gives you,
      $$
      a^2 - 5ab - 20 = 0
      $$



      for $a$ and $b$ in $mathbbW$.



      You are expressing $a$ in terms of $b$ as,
      $$
      a = frac5b pm sqrt25b^2+802
      $$



      Since you want to prove/disprove that $a$ and $b$ exist by checking whether the discriminant is whole. That is,
      $$
      sqrt25b^2+80 = n
      $$

      where $n in mathbbW$.
      Or,
      $$
      b = fracsqrtn^2 - 805
      $$



      Now, if we were to check it case by case, it is impossible as all we know is that $n geq 9$ (for it to even be real).



      There may however be other ways to prove the presence/absence of $a$ and $b$.






      share|cite|improve this answer










      New contributor




      Balakrishnan Rajan is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.






      $endgroup$












        Your Answer





        StackExchange.ifUsing("editor", function ()
        return StackExchange.using("mathjaxEditing", function ()
        StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
        StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
        );
        );
        , "mathjax-editing");

        StackExchange.ready(function()
        var channelOptions =
        tags: "".split(" "),
        id: "69"
        ;
        initTagRenderer("".split(" "), "".split(" "), channelOptions);

        StackExchange.using("externalEditor", function()
        // Have to fire editor after snippets, if snippets enabled
        if (StackExchange.settings.snippets.snippetsEnabled)
        StackExchange.using("snippets", function()
        createEditor();
        );

        else
        createEditor();

        );

        function createEditor()
        StackExchange.prepareEditor(
        heartbeatType: 'answer',
        autoActivateHeartbeat: false,
        convertImagesToLinks: true,
        noModals: true,
        showLowRepImageUploadWarning: true,
        reputationToPostImages: 10,
        bindNavPrevention: true,
        postfix: "",
        imageUploader:
        brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
        contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
        allowUrls: true
        ,
        noCode: true, onDemand: true,
        discardSelector: ".discard-answer"
        ,immediatelyShowMarkdownHelp:true
        );



        );













        draft saved

        draft discarded


















        StackExchange.ready(
        function ()
        StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3164219%2five-worked-out-the-reasoning-but-how-do-i-write-the-proof%23new-answer', 'question_page');

        );

        Post as a guest















        Required, but never shown

























        4 Answers
        4






        active

        oldest

        votes








        4 Answers
        4






        active

        oldest

        votes









        active

        oldest

        votes






        active

        oldest

        votes









        0












        $begingroup$

        You have several choices already for the proof, so I'll focus on the pattern of values of $delta.$
        I think this is easier to reason about if we write the expression under the radical as $(5b)^2 - 80.$
        In order for the radical to be a whole number, then,
        we would need the difference between two squares to be $80,$
        where one of the squares is a square of a multiple of $5.$



        For small values of $b$ there can be one or more squares strictly between
        $(5b)^2 - 80$ and $(5b)^2,$
        so $delta$ ends up being the difference between $(5b)^2$ and $(5b - n)^2$
        where $n geq 2.$ But



        $$ (5b)^2 - (5b - 1)^2 = (5b)^2 - ((5b)^2 - 2(5b) + 1) = 10b - 1, $$



        so if $b geq 9$ then the difference between $(5b)^2$ and the next smaller square is at least $89,$ which is greater than $80.$
        Hence there are no squares at all in the numbers from $(5b)^2 - 80$ to $(5b)^2$
        (other than $(5b)^2$ itself), so $delta$ is just the difference between
        $(5b)^2 - 80$ and the next smaller square, which is $(5b - 1)^2$:



        beginalign
        delta &= ((5b)^2 - 80) - (5b - 1)^2 \
        &= (10b - 1) - 80 \
        &= 10(b - 8) - 1\
        &= 10(b - 9) + 9.
        endalign



        (Note that this is slightly different from the formula written in the question.)



        By the way, since we found while doing this that there are no squares at all in the numbers from $(5b)^2 - 80$ to $(5b)^2 - 1$ when $b geq 9,$
        a corollary is that $(5b)^2 - 80$ is not a square, so after checking each case where $b < 9$ individually, you have shown that $(5b)^2 - 80$ cannot be a square.






        share|cite|improve this answer











        $endgroup$












        • $begingroup$
          Thanks to everyone who answered. I chose this answer for two reasons: Firstly it explained the emergence of the pattern behind $delta$, and secondly, it followed the original reasoning, which was what I requested.
          $endgroup$
          – Brendan
          2 hours ago















        0












        $begingroup$

        You have several choices already for the proof, so I'll focus on the pattern of values of $delta.$
        I think this is easier to reason about if we write the expression under the radical as $(5b)^2 - 80.$
        In order for the radical to be a whole number, then,
        we would need the difference between two squares to be $80,$
        where one of the squares is a square of a multiple of $5.$



        For small values of $b$ there can be one or more squares strictly between
        $(5b)^2 - 80$ and $(5b)^2,$
        so $delta$ ends up being the difference between $(5b)^2$ and $(5b - n)^2$
        where $n geq 2.$ But



        $$ (5b)^2 - (5b - 1)^2 = (5b)^2 - ((5b)^2 - 2(5b) + 1) = 10b - 1, $$



        so if $b geq 9$ then the difference between $(5b)^2$ and the next smaller square is at least $89,$ which is greater than $80.$
        Hence there are no squares at all in the numbers from $(5b)^2 - 80$ to $(5b)^2$
        (other than $(5b)^2$ itself), so $delta$ is just the difference between
        $(5b)^2 - 80$ and the next smaller square, which is $(5b - 1)^2$:



        beginalign
        delta &= ((5b)^2 - 80) - (5b - 1)^2 \
        &= (10b - 1) - 80 \
        &= 10(b - 8) - 1\
        &= 10(b - 9) + 9.
        endalign



        (Note that this is slightly different from the formula written in the question.)



        By the way, since we found while doing this that there are no squares at all in the numbers from $(5b)^2 - 80$ to $(5b)^2 - 1$ when $b geq 9,$
        a corollary is that $(5b)^2 - 80$ is not a square, so after checking each case where $b < 9$ individually, you have shown that $(5b)^2 - 80$ cannot be a square.






        share|cite|improve this answer











        $endgroup$












        • $begingroup$
          Thanks to everyone who answered. I chose this answer for two reasons: Firstly it explained the emergence of the pattern behind $delta$, and secondly, it followed the original reasoning, which was what I requested.
          $endgroup$
          – Brendan
          2 hours ago













        0












        0








        0





        $begingroup$

        You have several choices already for the proof, so I'll focus on the pattern of values of $delta.$
        I think this is easier to reason about if we write the expression under the radical as $(5b)^2 - 80.$
        In order for the radical to be a whole number, then,
        we would need the difference between two squares to be $80,$
        where one of the squares is a square of a multiple of $5.$



        For small values of $b$ there can be one or more squares strictly between
        $(5b)^2 - 80$ and $(5b)^2,$
        so $delta$ ends up being the difference between $(5b)^2$ and $(5b - n)^2$
        where $n geq 2.$ But



        $$ (5b)^2 - (5b - 1)^2 = (5b)^2 - ((5b)^2 - 2(5b) + 1) = 10b - 1, $$



        so if $b geq 9$ then the difference between $(5b)^2$ and the next smaller square is at least $89,$ which is greater than $80.$
        Hence there are no squares at all in the numbers from $(5b)^2 - 80$ to $(5b)^2$
        (other than $(5b)^2$ itself), so $delta$ is just the difference between
        $(5b)^2 - 80$ and the next smaller square, which is $(5b - 1)^2$:



        beginalign
        delta &= ((5b)^2 - 80) - (5b - 1)^2 \
        &= (10b - 1) - 80 \
        &= 10(b - 8) - 1\
        &= 10(b - 9) + 9.
        endalign



        (Note that this is slightly different from the formula written in the question.)



        By the way, since we found while doing this that there are no squares at all in the numbers from $(5b)^2 - 80$ to $(5b)^2 - 1$ when $b geq 9,$
        a corollary is that $(5b)^2 - 80$ is not a square, so after checking each case where $b < 9$ individually, you have shown that $(5b)^2 - 80$ cannot be a square.






        share|cite|improve this answer











        $endgroup$



        You have several choices already for the proof, so I'll focus on the pattern of values of $delta.$
        I think this is easier to reason about if we write the expression under the radical as $(5b)^2 - 80.$
        In order for the radical to be a whole number, then,
        we would need the difference between two squares to be $80,$
        where one of the squares is a square of a multiple of $5.$



        For small values of $b$ there can be one or more squares strictly between
        $(5b)^2 - 80$ and $(5b)^2,$
        so $delta$ ends up being the difference between $(5b)^2$ and $(5b - n)^2$
        where $n geq 2.$ But



        $$ (5b)^2 - (5b - 1)^2 = (5b)^2 - ((5b)^2 - 2(5b) + 1) = 10b - 1, $$



        so if $b geq 9$ then the difference between $(5b)^2$ and the next smaller square is at least $89,$ which is greater than $80.$
        Hence there are no squares at all in the numbers from $(5b)^2 - 80$ to $(5b)^2$
        (other than $(5b)^2$ itself), so $delta$ is just the difference between
        $(5b)^2 - 80$ and the next smaller square, which is $(5b - 1)^2$:



        beginalign
        delta &= ((5b)^2 - 80) - (5b - 1)^2 \
        &= (10b - 1) - 80 \
        &= 10(b - 8) - 1\
        &= 10(b - 9) + 9.
        endalign



        (Note that this is slightly different from the formula written in the question.)



        By the way, since we found while doing this that there are no squares at all in the numbers from $(5b)^2 - 80$ to $(5b)^2 - 1$ when $b geq 9,$
        a corollary is that $(5b)^2 - 80$ is not a square, so after checking each case where $b < 9$ individually, you have shown that $(5b)^2 - 80$ cannot be a square.







        share|cite|improve this answer














        share|cite|improve this answer



        share|cite|improve this answer








        edited 14 hours ago

























        answered 14 hours ago









        David KDavid K

        55.4k344120




        55.4k344120











        • $begingroup$
          Thanks to everyone who answered. I chose this answer for two reasons: Firstly it explained the emergence of the pattern behind $delta$, and secondly, it followed the original reasoning, which was what I requested.
          $endgroup$
          – Brendan
          2 hours ago
















        • $begingroup$
          Thanks to everyone who answered. I chose this answer for two reasons: Firstly it explained the emergence of the pattern behind $delta$, and secondly, it followed the original reasoning, which was what I requested.
          $endgroup$
          – Brendan
          2 hours ago















        $begingroup$
        Thanks to everyone who answered. I chose this answer for two reasons: Firstly it explained the emergence of the pattern behind $delta$, and secondly, it followed the original reasoning, which was what I requested.
        $endgroup$
        – Brendan
        2 hours ago




        $begingroup$
        Thanks to everyone who answered. I chose this answer for two reasons: Firstly it explained the emergence of the pattern behind $delta$, and secondly, it followed the original reasoning, which was what I requested.
        $endgroup$
        – Brendan
        2 hours ago











        4












        $begingroup$

        Note that $$bover 4+1over a=aover 20implies a^2=5ab+20implies a|20 , 5|a$$so all the possible cases are $$ain -20,-10,-5,5,10,20$$by a simple investigation, we conclude there are no integers $a,b$ such that $$bover 4+1over a=aover 20$$



        P.S.



        Generally, all the answers to the equation $$aover 4+1over b=cover 20$$are as follows$$(a,b,c)=left(a,b,5a+20over bright)$$with any arbitrary $ain Bbb Z$ and $b|20$.






        share|cite|improve this answer











        $endgroup$

















          4












          $begingroup$

          Note that $$bover 4+1over a=aover 20implies a^2=5ab+20implies a|20 , 5|a$$so all the possible cases are $$ain -20,-10,-5,5,10,20$$by a simple investigation, we conclude there are no integers $a,b$ such that $$bover 4+1over a=aover 20$$



          P.S.



          Generally, all the answers to the equation $$aover 4+1over b=cover 20$$are as follows$$(a,b,c)=left(a,b,5a+20over bright)$$with any arbitrary $ain Bbb Z$ and $b|20$.






          share|cite|improve this answer











          $endgroup$















            4












            4








            4





            $begingroup$

            Note that $$bover 4+1over a=aover 20implies a^2=5ab+20implies a|20 , 5|a$$so all the possible cases are $$ain -20,-10,-5,5,10,20$$by a simple investigation, we conclude there are no integers $a,b$ such that $$bover 4+1over a=aover 20$$



            P.S.



            Generally, all the answers to the equation $$aover 4+1over b=cover 20$$are as follows$$(a,b,c)=left(a,b,5a+20over bright)$$with any arbitrary $ain Bbb Z$ and $b|20$.






            share|cite|improve this answer











            $endgroup$



            Note that $$bover 4+1over a=aover 20implies a^2=5ab+20implies a|20 , 5|a$$so all the possible cases are $$ain -20,-10,-5,5,10,20$$by a simple investigation, we conclude there are no integers $a,b$ such that $$bover 4+1over a=aover 20$$



            P.S.



            Generally, all the answers to the equation $$aover 4+1over b=cover 20$$are as follows$$(a,b,c)=left(a,b,5a+20over bright)$$with any arbitrary $ain Bbb Z$ and $b|20$.







            share|cite|improve this answer














            share|cite|improve this answer



            share|cite|improve this answer








            edited 17 hours ago

























            answered 17 hours ago









            Mostafa AyazMostafa Ayaz

            18.1k31040




            18.1k31040





















                0












                $begingroup$

                Note that $sqrt25b^2 - 80 $ is a whole number if and only if $25b^2 - 80$ is a square. This gives the equation
                $$ 25b^2 - 80 = a^2 implies a^2-25b^2 = 80 implies a^2-(5b)^2 = 80$$
                This can be factored as
                $$ (a-5b)(a+5b) = 80.$$
                Using the prime factorization of $80 = 2^4 cdot 5$ and that $a$ and $b$ are whole numbers, this results in a number of equation systems of the form
                $$ begincases a-5b = c_1 \ a+5b = c_2 endcases $$
                where $c_1$ and $c_2$ are whole numbers such that $c_1 c_2 = 80$ (there are $20$ such systems: ten positive and ten negative).



                Solving these will reduce your search to a finite number of possible solutions for $a$ and $b$, which you can sort out manually.






                share|cite|improve this answer









                $endgroup$

















                  0












                  $begingroup$

                  Note that $sqrt25b^2 - 80 $ is a whole number if and only if $25b^2 - 80$ is a square. This gives the equation
                  $$ 25b^2 - 80 = a^2 implies a^2-25b^2 = 80 implies a^2-(5b)^2 = 80$$
                  This can be factored as
                  $$ (a-5b)(a+5b) = 80.$$
                  Using the prime factorization of $80 = 2^4 cdot 5$ and that $a$ and $b$ are whole numbers, this results in a number of equation systems of the form
                  $$ begincases a-5b = c_1 \ a+5b = c_2 endcases $$
                  where $c_1$ and $c_2$ are whole numbers such that $c_1 c_2 = 80$ (there are $20$ such systems: ten positive and ten negative).



                  Solving these will reduce your search to a finite number of possible solutions for $a$ and $b$, which you can sort out manually.






                  share|cite|improve this answer









                  $endgroup$















                    0












                    0








                    0





                    $begingroup$

                    Note that $sqrt25b^2 - 80 $ is a whole number if and only if $25b^2 - 80$ is a square. This gives the equation
                    $$ 25b^2 - 80 = a^2 implies a^2-25b^2 = 80 implies a^2-(5b)^2 = 80$$
                    This can be factored as
                    $$ (a-5b)(a+5b) = 80.$$
                    Using the prime factorization of $80 = 2^4 cdot 5$ and that $a$ and $b$ are whole numbers, this results in a number of equation systems of the form
                    $$ begincases a-5b = c_1 \ a+5b = c_2 endcases $$
                    where $c_1$ and $c_2$ are whole numbers such that $c_1 c_2 = 80$ (there are $20$ such systems: ten positive and ten negative).



                    Solving these will reduce your search to a finite number of possible solutions for $a$ and $b$, which you can sort out manually.






                    share|cite|improve this answer









                    $endgroup$



                    Note that $sqrt25b^2 - 80 $ is a whole number if and only if $25b^2 - 80$ is a square. This gives the equation
                    $$ 25b^2 - 80 = a^2 implies a^2-25b^2 = 80 implies a^2-(5b)^2 = 80$$
                    This can be factored as
                    $$ (a-5b)(a+5b) = 80.$$
                    Using the prime factorization of $80 = 2^4 cdot 5$ and that $a$ and $b$ are whole numbers, this results in a number of equation systems of the form
                    $$ begincases a-5b = c_1 \ a+5b = c_2 endcases $$
                    where $c_1$ and $c_2$ are whole numbers such that $c_1 c_2 = 80$ (there are $20$ such systems: ten positive and ten negative).



                    Solving these will reduce your search to a finite number of possible solutions for $a$ and $b$, which you can sort out manually.







                    share|cite|improve this answer












                    share|cite|improve this answer



                    share|cite|improve this answer










                    answered 17 hours ago









                    Daniel AhlsénDaniel Ahlsén

                    3765




                    3765





















                        0












                        $begingroup$

                        So you have,
                        $$
                        fracb4 + frac1a = fraca20
                        $$



                        This gives you,
                        $$
                        a^2 - 5ab - 20 = 0
                        $$



                        for $a$ and $b$ in $mathbbW$.



                        You are expressing $a$ in terms of $b$ as,
                        $$
                        a = frac5b pm sqrt25b^2+802
                        $$



                        Since you want to prove/disprove that $a$ and $b$ exist by checking whether the discriminant is whole. That is,
                        $$
                        sqrt25b^2+80 = n
                        $$

                        where $n in mathbbW$.
                        Or,
                        $$
                        b = fracsqrtn^2 - 805
                        $$



                        Now, if we were to check it case by case, it is impossible as all we know is that $n geq 9$ (for it to even be real).



                        There may however be other ways to prove the presence/absence of $a$ and $b$.






                        share|cite|improve this answer










                        New contributor




                        Balakrishnan Rajan is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
                        Check out our Code of Conduct.






                        $endgroup$

















                          0












                          $begingroup$

                          So you have,
                          $$
                          fracb4 + frac1a = fraca20
                          $$



                          This gives you,
                          $$
                          a^2 - 5ab - 20 = 0
                          $$



                          for $a$ and $b$ in $mathbbW$.



                          You are expressing $a$ in terms of $b$ as,
                          $$
                          a = frac5b pm sqrt25b^2+802
                          $$



                          Since you want to prove/disprove that $a$ and $b$ exist by checking whether the discriminant is whole. That is,
                          $$
                          sqrt25b^2+80 = n
                          $$

                          where $n in mathbbW$.
                          Or,
                          $$
                          b = fracsqrtn^2 - 805
                          $$



                          Now, if we were to check it case by case, it is impossible as all we know is that $n geq 9$ (for it to even be real).



                          There may however be other ways to prove the presence/absence of $a$ and $b$.






                          share|cite|improve this answer










                          New contributor




                          Balakrishnan Rajan is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
                          Check out our Code of Conduct.






                          $endgroup$















                            0












                            0








                            0





                            $begingroup$

                            So you have,
                            $$
                            fracb4 + frac1a = fraca20
                            $$



                            This gives you,
                            $$
                            a^2 - 5ab - 20 = 0
                            $$



                            for $a$ and $b$ in $mathbbW$.



                            You are expressing $a$ in terms of $b$ as,
                            $$
                            a = frac5b pm sqrt25b^2+802
                            $$



                            Since you want to prove/disprove that $a$ and $b$ exist by checking whether the discriminant is whole. That is,
                            $$
                            sqrt25b^2+80 = n
                            $$

                            where $n in mathbbW$.
                            Or,
                            $$
                            b = fracsqrtn^2 - 805
                            $$



                            Now, if we were to check it case by case, it is impossible as all we know is that $n geq 9$ (for it to even be real).



                            There may however be other ways to prove the presence/absence of $a$ and $b$.






                            share|cite|improve this answer










                            New contributor




                            Balakrishnan Rajan is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
                            Check out our Code of Conduct.






                            $endgroup$



                            So you have,
                            $$
                            fracb4 + frac1a = fraca20
                            $$



                            This gives you,
                            $$
                            a^2 - 5ab - 20 = 0
                            $$



                            for $a$ and $b$ in $mathbbW$.



                            You are expressing $a$ in terms of $b$ as,
                            $$
                            a = frac5b pm sqrt25b^2+802
                            $$



                            Since you want to prove/disprove that $a$ and $b$ exist by checking whether the discriminant is whole. That is,
                            $$
                            sqrt25b^2+80 = n
                            $$

                            where $n in mathbbW$.
                            Or,
                            $$
                            b = fracsqrtn^2 - 805
                            $$



                            Now, if we were to check it case by case, it is impossible as all we know is that $n geq 9$ (for it to even be real).



                            There may however be other ways to prove the presence/absence of $a$ and $b$.







                            share|cite|improve this answer










                            New contributor




                            Balakrishnan Rajan is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
                            Check out our Code of Conduct.









                            share|cite|improve this answer



                            share|cite|improve this answer








                            edited 17 hours ago





















                            New contributor




                            Balakrishnan Rajan is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
                            Check out our Code of Conduct.









                            answered 17 hours ago









                            Balakrishnan RajanBalakrishnan Rajan

                            1519




                            1519




                            New contributor




                            Balakrishnan Rajan is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
                            Check out our Code of Conduct.





                            New contributor





                            Balakrishnan Rajan is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
                            Check out our Code of Conduct.






                            Balakrishnan Rajan is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
                            Check out our Code of Conduct.



























                                draft saved

                                draft discarded
















































                                Thanks for contributing an answer to Mathematics Stack Exchange!


                                • Please be sure to answer the question. Provide details and share your research!

                                But avoid


                                • Asking for help, clarification, or responding to other answers.

                                • Making statements based on opinion; back them up with references or personal experience.

                                Use MathJax to format equations. MathJax reference.


                                To learn more, see our tips on writing great answers.




                                draft saved


                                draft discarded














                                StackExchange.ready(
                                function ()
                                StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3164219%2five-worked-out-the-reasoning-but-how-do-i-write-the-proof%23new-answer', 'question_page');

                                );

                                Post as a guest















                                Required, but never shown





















































                                Required, but never shown














                                Required, but never shown












                                Required, but never shown







                                Required, but never shown

































                                Required, but never shown














                                Required, but never shown












                                Required, but never shown







                                Required, but never shown







                                Popular posts from this blog

                                រឿង រ៉ូមេអូ និង ហ្ស៊ុយលីយេ សង្ខេបរឿង តួអង្គ បញ្ជីណែនាំ

                                Crop image to path created in TikZ? Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern)Crop an inserted image?TikZ pictures does not appear in posterImage behind and beyond crop marks?Tikz picture as large as possible on A4 PageTransparency vs image compression dilemmaHow to crop background from image automatically?Image does not cropTikzexternal capturing crop marks when externalizing pgfplots?How to include image path that contains a dollar signCrop image with left size given

                                Romeo and Juliet ContentsCharactersSynopsisSourcesDate and textThemes and motifsCriticism and interpretationLegacyScene by sceneSee alsoNotes and referencesSourcesExternal linksNavigation menu"Consumer Price Index (estimate) 1800–"10.2307/28710160037-3222287101610.1093/res/II.5.31910.2307/45967845967810.2307/2869925286992510.1525/jams.1982.35.3.03a00050"Dada Masilo: South African dancer who breaks the rules"10.1093/res/os-XV.57.1610.2307/28680942868094"Sweet Sorrow: Mann-Korman's Romeo and Juliet Closes Sept. 5 at MN's Ordway"the original10.2307/45957745957710.1017/CCOL0521570476.009"Ram Leela box office collections hit massive Rs 100 crore, pulverises prediction"Archived"Broadway Revival of Romeo and Juliet, Starring Orlando Bloom and Condola Rashad, Will Close Dec. 8"Archived10.1075/jhp.7.1.04hon"Wherefore art thou, Romeo? To make us laugh at Navy Pier"the original10.1093/gmo/9781561592630.article.O006772"Ram-leela Review Roundup: Critics Hail Film as Best Adaptation of Romeo and Juliet"Archived10.2307/31946310047-77293194631"Romeo and Juliet get Twitter treatment""Juliet's Nurse by Lois Leveen""Romeo and Juliet: Orlando Bloom's Broadway Debut Released in Theaters for Valentine's Day"Archived"Romeo and Juliet Has No Balcony"10.1093/gmo/9781561592630.article.O00778110.2307/2867423286742310.1076/enst.82.2.115.959510.1080/00138380601042675"A plague o' both your houses: error in GCSE exam paper forces apology""Juliet of the Five O'Clock Shadow, and Other Wonders"10.2307/33912430027-4321339124310.2307/28487440038-7134284874410.2307/29123140149-661129123144728341M"Weekender Guide: Shakespeare on The Drive""balcony"UK public library membership"romeo"UK public library membership10.1017/CCOL9780521844291"Post-Zionist Critique on Israel and the Palestinians Part III: Popular Culture"10.2307/25379071533-86140377-919X2537907"Capulets and Montagues: UK exam board admit mixing names up in Romeo and Juliet paper"Istoria Novellamente Ritrovata di Due Nobili Amanti2027/mdp.390150822329610820-750X"GCSE exam error: Board accidentally rewrites Shakespeare"10.2307/29176390149-66112917639"Exam board apologises after error in English GCSE paper which confused characters in Shakespeare's Romeo and Juliet""From Mariotto and Ganozza to Romeo and Guilietta: Metamorphoses of a Renaissance Tale"10.2307/37323537323510.2307/2867455286745510.2307/28678912867891"10 Questions for Taylor Swift"10.2307/28680922868092"Haymarket Theatre""The Zeffirelli Way: Revealing Talk by Florentine Director""Michael Smuin: 1938-2007 / Prolific dance director had showy career"The Life and Art of Edwin BoothRomeo and JulietRomeo and JulietRomeo and JulietRomeo and JulietEasy Read Romeo and JulietRomeo and Julieteeecb12003684p(data)4099369-3n8211610759dbe00d-a9e2-41a3-b2c1-977dd692899302814385X313670221313670221