Flag only first row where condition is met in a DataFrameAdd one row to pandas DataFrameFilter dataframe rows if value in column is in a set list of valuesUse a list of values to select rows from a pandas dataframeHow to drop rows of Pandas DataFrame whose value in certain columns is NaNHow do I get the row count of a Pandas dataframe?Selecting a row of pandas series/dataframe by integer indexHow to iterate over rows in a DataFrame in Pandas?Select rows from a DataFrame based on values in a column in pandasDeleting DataFrame row in Pandas based on column valuer - reorder certain rows if condition is met
How does buying out courses with grant money work?
India just shot down a satellite from the ground. At what altitude range is the resulting debris field?
What happens if you roll doubles 3 times then land on "Go to jail?"
How can I get through very long and very dry, but also very useful technical documents when learning a new tool?
Would a high gravity rocky planet be guaranteed to have an atmosphere?
How do I go from 300 unfinished/half written blog posts, to published posts?
Pole-zeros of a real-valued causal FIR system
Is exact Kanji stroke length important?
Flow chart document symbol
Tiptoe or tiphoof? Adjusting words to better fit fantasy races
Energy of the particles in the particle accelerator
How can a function with a hole (removable discontinuity) equal a function with no hole?
Class Action - which options I have?
What does 算不上 mean in 算不上太美好的日子?
A Rare Riley Riddle
What can we do to stop prior company from asking us questions?
Would this custom Sorcerer variant that can only learn any verbal-component-only spell be unbalanced?
Large drywall patch supports
Shortcut for value of this indefinite integral?
Is the destination of a commercial flight important for the pilot?
Short story about space worker geeks who zone out by 'listening' to radiation from stars
How does it work when somebody invests in my business?
Is there a problem with hiding "forgot password" until it's needed?
Unreliable Magic - Is it worth it?
Flag only first row where condition is met in a DataFrame
Add one row to pandas DataFrameFilter dataframe rows if value in column is in a set list of valuesUse a list of values to select rows from a pandas dataframeHow to drop rows of Pandas DataFrame whose value in certain columns is NaNHow do I get the row count of a Pandas dataframe?Selecting a row of pandas series/dataframe by integer indexHow to iterate over rows in a DataFrame in Pandas?Select rows from a DataFrame based on values in a column in pandasDeleting DataFrame row in Pandas based on column valuer - reorder certain rows if condition is met
I have the following DataFrame df
, which can be created as follows:
date_today = datetime.now().date()
days = pd.date_range(date_today, date_today + timedelta(19), freq='D')
x = np.arange(0,2*np.pi,0.1*np.pi) # start,stop,step
y = np.sin(x)
df = pd.DataFrame('dates': days, 'vals': y, 'is_hit': abs(y)>0.9)
df = df.set_index('dates')
And which looks like this:
is_hit vals
dates
2019-03-27 False 0.000000e+00
2019-03-28 False 3.090170e-01
2019-03-29 False 5.877853e-01
2019-03-30 False 8.090170e-01
2019-03-31 True 9.510565e-01
2019-04-01 True 1.000000e+00
2019-04-02 True 9.510565e-01
2019-04-03 False 8.090170e-01
2019-04-04 False 5.877853e-01
2019-04-05 False 3.090170e-01
2019-04-06 False 1.224647e-16
2019-04-07 False -3.090170e-01
2019-04-08 False -5.877853e-01
2019-04-09 False -8.090170e-01
2019-04-10 True -9.510565e-01
2019-04-11 True -1.000000e+00
2019-04-12 True -9.510565e-01
2019-04-13 False -8.090170e-01
2019-04-14 False -5.877853e-01
2019-04-15 False -3.090170e-01
I want to flag the rows where the is_hit
condition is True
for the first time, such that the expected new column hit_first
would be:
is_hit vals hit_first
dates
2019-03-27 False 0.000000e+00 False
2019-03-28 False 3.090170e-01 False
2019-03-29 False 5.877853e-01 False
2019-03-30 False 8.090170e-01 False
2019-03-31 True 9.510565e-01 True
2019-04-01 True 1.000000e+00 False
2019-04-02 True 9.510565e-01 False
2019-04-03 False 8.090170e-01 False
2019-04-04 False 5.877853e-01 False
2019-04-05 False 3.090170e-01 False
2019-04-06 False 1.224647e-16 False
2019-04-07 False -3.090170e-01 False
2019-04-08 False -5.877853e-01 False
2019-04-09 False -8.090170e-01 False
2019-04-10 True -9.510565e-01 True
2019-04-11 True -1.000000e+00 False
2019-04-12 True -9.510565e-01 False
2019-04-13 False -8.090170e-01 False
2019-04-14 False -5.877853e-01 False
2019-04-15 False -3.090170e-01 False
python pandas dataframe
add a comment |
I have the following DataFrame df
, which can be created as follows:
date_today = datetime.now().date()
days = pd.date_range(date_today, date_today + timedelta(19), freq='D')
x = np.arange(0,2*np.pi,0.1*np.pi) # start,stop,step
y = np.sin(x)
df = pd.DataFrame('dates': days, 'vals': y, 'is_hit': abs(y)>0.9)
df = df.set_index('dates')
And which looks like this:
is_hit vals
dates
2019-03-27 False 0.000000e+00
2019-03-28 False 3.090170e-01
2019-03-29 False 5.877853e-01
2019-03-30 False 8.090170e-01
2019-03-31 True 9.510565e-01
2019-04-01 True 1.000000e+00
2019-04-02 True 9.510565e-01
2019-04-03 False 8.090170e-01
2019-04-04 False 5.877853e-01
2019-04-05 False 3.090170e-01
2019-04-06 False 1.224647e-16
2019-04-07 False -3.090170e-01
2019-04-08 False -5.877853e-01
2019-04-09 False -8.090170e-01
2019-04-10 True -9.510565e-01
2019-04-11 True -1.000000e+00
2019-04-12 True -9.510565e-01
2019-04-13 False -8.090170e-01
2019-04-14 False -5.877853e-01
2019-04-15 False -3.090170e-01
I want to flag the rows where the is_hit
condition is True
for the first time, such that the expected new column hit_first
would be:
is_hit vals hit_first
dates
2019-03-27 False 0.000000e+00 False
2019-03-28 False 3.090170e-01 False
2019-03-29 False 5.877853e-01 False
2019-03-30 False 8.090170e-01 False
2019-03-31 True 9.510565e-01 True
2019-04-01 True 1.000000e+00 False
2019-04-02 True 9.510565e-01 False
2019-04-03 False 8.090170e-01 False
2019-04-04 False 5.877853e-01 False
2019-04-05 False 3.090170e-01 False
2019-04-06 False 1.224647e-16 False
2019-04-07 False -3.090170e-01 False
2019-04-08 False -5.877853e-01 False
2019-04-09 False -8.090170e-01 False
2019-04-10 True -9.510565e-01 True
2019-04-11 True -1.000000e+00 False
2019-04-12 True -9.510565e-01 False
2019-04-13 False -8.090170e-01 False
2019-04-14 False -5.877853e-01 False
2019-04-15 False -3.090170e-01 False
python pandas dataframe
add a comment |
I have the following DataFrame df
, which can be created as follows:
date_today = datetime.now().date()
days = pd.date_range(date_today, date_today + timedelta(19), freq='D')
x = np.arange(0,2*np.pi,0.1*np.pi) # start,stop,step
y = np.sin(x)
df = pd.DataFrame('dates': days, 'vals': y, 'is_hit': abs(y)>0.9)
df = df.set_index('dates')
And which looks like this:
is_hit vals
dates
2019-03-27 False 0.000000e+00
2019-03-28 False 3.090170e-01
2019-03-29 False 5.877853e-01
2019-03-30 False 8.090170e-01
2019-03-31 True 9.510565e-01
2019-04-01 True 1.000000e+00
2019-04-02 True 9.510565e-01
2019-04-03 False 8.090170e-01
2019-04-04 False 5.877853e-01
2019-04-05 False 3.090170e-01
2019-04-06 False 1.224647e-16
2019-04-07 False -3.090170e-01
2019-04-08 False -5.877853e-01
2019-04-09 False -8.090170e-01
2019-04-10 True -9.510565e-01
2019-04-11 True -1.000000e+00
2019-04-12 True -9.510565e-01
2019-04-13 False -8.090170e-01
2019-04-14 False -5.877853e-01
2019-04-15 False -3.090170e-01
I want to flag the rows where the is_hit
condition is True
for the first time, such that the expected new column hit_first
would be:
is_hit vals hit_first
dates
2019-03-27 False 0.000000e+00 False
2019-03-28 False 3.090170e-01 False
2019-03-29 False 5.877853e-01 False
2019-03-30 False 8.090170e-01 False
2019-03-31 True 9.510565e-01 True
2019-04-01 True 1.000000e+00 False
2019-04-02 True 9.510565e-01 False
2019-04-03 False 8.090170e-01 False
2019-04-04 False 5.877853e-01 False
2019-04-05 False 3.090170e-01 False
2019-04-06 False 1.224647e-16 False
2019-04-07 False -3.090170e-01 False
2019-04-08 False -5.877853e-01 False
2019-04-09 False -8.090170e-01 False
2019-04-10 True -9.510565e-01 True
2019-04-11 True -1.000000e+00 False
2019-04-12 True -9.510565e-01 False
2019-04-13 False -8.090170e-01 False
2019-04-14 False -5.877853e-01 False
2019-04-15 False -3.090170e-01 False
python pandas dataframe
I have the following DataFrame df
, which can be created as follows:
date_today = datetime.now().date()
days = pd.date_range(date_today, date_today + timedelta(19), freq='D')
x = np.arange(0,2*np.pi,0.1*np.pi) # start,stop,step
y = np.sin(x)
df = pd.DataFrame('dates': days, 'vals': y, 'is_hit': abs(y)>0.9)
df = df.set_index('dates')
And which looks like this:
is_hit vals
dates
2019-03-27 False 0.000000e+00
2019-03-28 False 3.090170e-01
2019-03-29 False 5.877853e-01
2019-03-30 False 8.090170e-01
2019-03-31 True 9.510565e-01
2019-04-01 True 1.000000e+00
2019-04-02 True 9.510565e-01
2019-04-03 False 8.090170e-01
2019-04-04 False 5.877853e-01
2019-04-05 False 3.090170e-01
2019-04-06 False 1.224647e-16
2019-04-07 False -3.090170e-01
2019-04-08 False -5.877853e-01
2019-04-09 False -8.090170e-01
2019-04-10 True -9.510565e-01
2019-04-11 True -1.000000e+00
2019-04-12 True -9.510565e-01
2019-04-13 False -8.090170e-01
2019-04-14 False -5.877853e-01
2019-04-15 False -3.090170e-01
I want to flag the rows where the is_hit
condition is True
for the first time, such that the expected new column hit_first
would be:
is_hit vals hit_first
dates
2019-03-27 False 0.000000e+00 False
2019-03-28 False 3.090170e-01 False
2019-03-29 False 5.877853e-01 False
2019-03-30 False 8.090170e-01 False
2019-03-31 True 9.510565e-01 True
2019-04-01 True 1.000000e+00 False
2019-04-02 True 9.510565e-01 False
2019-04-03 False 8.090170e-01 False
2019-04-04 False 5.877853e-01 False
2019-04-05 False 3.090170e-01 False
2019-04-06 False 1.224647e-16 False
2019-04-07 False -3.090170e-01 False
2019-04-08 False -5.877853e-01 False
2019-04-09 False -8.090170e-01 False
2019-04-10 True -9.510565e-01 True
2019-04-11 True -1.000000e+00 False
2019-04-12 True -9.510565e-01 False
2019-04-13 False -8.090170e-01 False
2019-04-14 False -5.877853e-01 False
2019-04-15 False -3.090170e-01 False
python pandas dataframe
python pandas dataframe
asked 18 hours ago
JejeBelfortJejeBelfort
6591624
6591624
add a comment |
add a comment |
4 Answers
4
active
oldest
votes
My suggestion:
df['hit_first'] = df['is_hit'] & (~df['is_hit']).shift(1)
add a comment |
Use Series.shift
chained with &
for bitwise AND
:
df['hit_first'] = df['is_hit'].ne(df['is_hit'].shift()) & df['is_hit']
print (df)
vals is_hit hit_first
dates
2019-03-27 0.000000e+00 False False
2019-03-28 3.090170e-01 False False
2019-03-29 5.877853e-01 False False
2019-03-30 8.090170e-01 False False
2019-03-31 9.510565e-01 True True
2019-04-01 1.000000e+00 True False
2019-04-02 9.510565e-01 True False
2019-04-03 8.090170e-01 False False
2019-04-04 5.877853e-01 False False
2019-04-05 3.090170e-01 False False
2019-04-06 1.224647e-16 False False
2019-04-07 -3.090170e-01 False False
2019-04-08 -5.877853e-01 False False
2019-04-09 -8.090170e-01 False False
2019-04-10 -9.510565e-01 True True
2019-04-11 -1.000000e+00 True False
2019-04-12 -9.510565e-01 True False
2019-04-13 -8.090170e-01 False False
2019-04-14 -5.877853e-01 False False
2019-04-15 -3.090170e-01 False False
add a comment |
I also, think you can do it this way:
df['is_hit'].astype(int).diff() == 1
Output:
dates
2019-03-27 False
2019-03-28 False
2019-03-29 False
2019-03-30 False
2019-03-31 True
2019-04-01 False
2019-04-02 False
2019-04-03 False
2019-04-04 False
2019-04-05 False
2019-04-06 False
2019-04-07 False
2019-04-08 False
2019-04-09 False
2019-04-10 True
2019-04-11 False
2019-04-12 False
2019-04-13 False
2019-04-14 False
2019-04-15 False
Name: is_hit, dtype: bool
Timings:
%timeit df['is_hit'] & (~df['is_hit']).shift(1)
1.13 ms ± 5.63 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
%timeit df['is_hit'].ne(df['is_hit'].shift()) & df['is_hit']
908 µs ± 9.53 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
%timeit df['is_hit'].astype(int).diff() == 1
689 µs ± 8.24 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
2
Nice, maybe performance in large data should be interesting.
– jezrael
17 hours ago
add a comment |
Also this can be done by using simple difference between the series and it's shifted series by 1 period :
df['hit_first'] = df['is_hit']-df['is_hit'].shift()==1
1
The use ofnp.where
here is quite pointless.
– miradulo
11 hours ago
Yes I understood. Thanks :)
– Loochie
9 hours ago
While this code may answer the question, providing additional context regarding how and/or why it solves the problem would improve the answer's long-term value.
– DebanjanB
9 hours ago
add a comment |
Your Answer
StackExchange.ifUsing("editor", function ()
StackExchange.using("externalEditor", function ()
StackExchange.using("snippets", function ()
StackExchange.snippets.init();
);
);
, "code-snippets");
StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "1"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);
else
createEditor();
);
function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);
);
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f55377130%2fflag-only-first-row-where-condition-is-met-in-a-dataframe%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
4 Answers
4
active
oldest
votes
4 Answers
4
active
oldest
votes
active
oldest
votes
active
oldest
votes
My suggestion:
df['hit_first'] = df['is_hit'] & (~df['is_hit']).shift(1)
add a comment |
My suggestion:
df['hit_first'] = df['is_hit'] & (~df['is_hit']).shift(1)
add a comment |
My suggestion:
df['hit_first'] = df['is_hit'] & (~df['is_hit']).shift(1)
My suggestion:
df['hit_first'] = df['is_hit'] & (~df['is_hit']).shift(1)
answered 17 hours ago
ecortazarecortazar
7867
7867
add a comment |
add a comment |
Use Series.shift
chained with &
for bitwise AND
:
df['hit_first'] = df['is_hit'].ne(df['is_hit'].shift()) & df['is_hit']
print (df)
vals is_hit hit_first
dates
2019-03-27 0.000000e+00 False False
2019-03-28 3.090170e-01 False False
2019-03-29 5.877853e-01 False False
2019-03-30 8.090170e-01 False False
2019-03-31 9.510565e-01 True True
2019-04-01 1.000000e+00 True False
2019-04-02 9.510565e-01 True False
2019-04-03 8.090170e-01 False False
2019-04-04 5.877853e-01 False False
2019-04-05 3.090170e-01 False False
2019-04-06 1.224647e-16 False False
2019-04-07 -3.090170e-01 False False
2019-04-08 -5.877853e-01 False False
2019-04-09 -8.090170e-01 False False
2019-04-10 -9.510565e-01 True True
2019-04-11 -1.000000e+00 True False
2019-04-12 -9.510565e-01 True False
2019-04-13 -8.090170e-01 False False
2019-04-14 -5.877853e-01 False False
2019-04-15 -3.090170e-01 False False
add a comment |
Use Series.shift
chained with &
for bitwise AND
:
df['hit_first'] = df['is_hit'].ne(df['is_hit'].shift()) & df['is_hit']
print (df)
vals is_hit hit_first
dates
2019-03-27 0.000000e+00 False False
2019-03-28 3.090170e-01 False False
2019-03-29 5.877853e-01 False False
2019-03-30 8.090170e-01 False False
2019-03-31 9.510565e-01 True True
2019-04-01 1.000000e+00 True False
2019-04-02 9.510565e-01 True False
2019-04-03 8.090170e-01 False False
2019-04-04 5.877853e-01 False False
2019-04-05 3.090170e-01 False False
2019-04-06 1.224647e-16 False False
2019-04-07 -3.090170e-01 False False
2019-04-08 -5.877853e-01 False False
2019-04-09 -8.090170e-01 False False
2019-04-10 -9.510565e-01 True True
2019-04-11 -1.000000e+00 True False
2019-04-12 -9.510565e-01 True False
2019-04-13 -8.090170e-01 False False
2019-04-14 -5.877853e-01 False False
2019-04-15 -3.090170e-01 False False
add a comment |
Use Series.shift
chained with &
for bitwise AND
:
df['hit_first'] = df['is_hit'].ne(df['is_hit'].shift()) & df['is_hit']
print (df)
vals is_hit hit_first
dates
2019-03-27 0.000000e+00 False False
2019-03-28 3.090170e-01 False False
2019-03-29 5.877853e-01 False False
2019-03-30 8.090170e-01 False False
2019-03-31 9.510565e-01 True True
2019-04-01 1.000000e+00 True False
2019-04-02 9.510565e-01 True False
2019-04-03 8.090170e-01 False False
2019-04-04 5.877853e-01 False False
2019-04-05 3.090170e-01 False False
2019-04-06 1.224647e-16 False False
2019-04-07 -3.090170e-01 False False
2019-04-08 -5.877853e-01 False False
2019-04-09 -8.090170e-01 False False
2019-04-10 -9.510565e-01 True True
2019-04-11 -1.000000e+00 True False
2019-04-12 -9.510565e-01 True False
2019-04-13 -8.090170e-01 False False
2019-04-14 -5.877853e-01 False False
2019-04-15 -3.090170e-01 False False
Use Series.shift
chained with &
for bitwise AND
:
df['hit_first'] = df['is_hit'].ne(df['is_hit'].shift()) & df['is_hit']
print (df)
vals is_hit hit_first
dates
2019-03-27 0.000000e+00 False False
2019-03-28 3.090170e-01 False False
2019-03-29 5.877853e-01 False False
2019-03-30 8.090170e-01 False False
2019-03-31 9.510565e-01 True True
2019-04-01 1.000000e+00 True False
2019-04-02 9.510565e-01 True False
2019-04-03 8.090170e-01 False False
2019-04-04 5.877853e-01 False False
2019-04-05 3.090170e-01 False False
2019-04-06 1.224647e-16 False False
2019-04-07 -3.090170e-01 False False
2019-04-08 -5.877853e-01 False False
2019-04-09 -8.090170e-01 False False
2019-04-10 -9.510565e-01 True True
2019-04-11 -1.000000e+00 True False
2019-04-12 -9.510565e-01 True False
2019-04-13 -8.090170e-01 False False
2019-04-14 -5.877853e-01 False False
2019-04-15 -3.090170e-01 False False
edited 17 hours ago
answered 17 hours ago
jezraeljezrael
352k26316391
352k26316391
add a comment |
add a comment |
I also, think you can do it this way:
df['is_hit'].astype(int).diff() == 1
Output:
dates
2019-03-27 False
2019-03-28 False
2019-03-29 False
2019-03-30 False
2019-03-31 True
2019-04-01 False
2019-04-02 False
2019-04-03 False
2019-04-04 False
2019-04-05 False
2019-04-06 False
2019-04-07 False
2019-04-08 False
2019-04-09 False
2019-04-10 True
2019-04-11 False
2019-04-12 False
2019-04-13 False
2019-04-14 False
2019-04-15 False
Name: is_hit, dtype: bool
Timings:
%timeit df['is_hit'] & (~df['is_hit']).shift(1)
1.13 ms ± 5.63 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
%timeit df['is_hit'].ne(df['is_hit'].shift()) & df['is_hit']
908 µs ± 9.53 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
%timeit df['is_hit'].astype(int).diff() == 1
689 µs ± 8.24 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
2
Nice, maybe performance in large data should be interesting.
– jezrael
17 hours ago
add a comment |
I also, think you can do it this way:
df['is_hit'].astype(int).diff() == 1
Output:
dates
2019-03-27 False
2019-03-28 False
2019-03-29 False
2019-03-30 False
2019-03-31 True
2019-04-01 False
2019-04-02 False
2019-04-03 False
2019-04-04 False
2019-04-05 False
2019-04-06 False
2019-04-07 False
2019-04-08 False
2019-04-09 False
2019-04-10 True
2019-04-11 False
2019-04-12 False
2019-04-13 False
2019-04-14 False
2019-04-15 False
Name: is_hit, dtype: bool
Timings:
%timeit df['is_hit'] & (~df['is_hit']).shift(1)
1.13 ms ± 5.63 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
%timeit df['is_hit'].ne(df['is_hit'].shift()) & df['is_hit']
908 µs ± 9.53 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
%timeit df['is_hit'].astype(int).diff() == 1
689 µs ± 8.24 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
2
Nice, maybe performance in large data should be interesting.
– jezrael
17 hours ago
add a comment |
I also, think you can do it this way:
df['is_hit'].astype(int).diff() == 1
Output:
dates
2019-03-27 False
2019-03-28 False
2019-03-29 False
2019-03-30 False
2019-03-31 True
2019-04-01 False
2019-04-02 False
2019-04-03 False
2019-04-04 False
2019-04-05 False
2019-04-06 False
2019-04-07 False
2019-04-08 False
2019-04-09 False
2019-04-10 True
2019-04-11 False
2019-04-12 False
2019-04-13 False
2019-04-14 False
2019-04-15 False
Name: is_hit, dtype: bool
Timings:
%timeit df['is_hit'] & (~df['is_hit']).shift(1)
1.13 ms ± 5.63 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
%timeit df['is_hit'].ne(df['is_hit'].shift()) & df['is_hit']
908 µs ± 9.53 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
%timeit df['is_hit'].astype(int).diff() == 1
689 µs ± 8.24 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
I also, think you can do it this way:
df['is_hit'].astype(int).diff() == 1
Output:
dates
2019-03-27 False
2019-03-28 False
2019-03-29 False
2019-03-30 False
2019-03-31 True
2019-04-01 False
2019-04-02 False
2019-04-03 False
2019-04-04 False
2019-04-05 False
2019-04-06 False
2019-04-07 False
2019-04-08 False
2019-04-09 False
2019-04-10 True
2019-04-11 False
2019-04-12 False
2019-04-13 False
2019-04-14 False
2019-04-15 False
Name: is_hit, dtype: bool
Timings:
%timeit df['is_hit'] & (~df['is_hit']).shift(1)
1.13 ms ± 5.63 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
%timeit df['is_hit'].ne(df['is_hit'].shift()) & df['is_hit']
908 µs ± 9.53 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
%timeit df['is_hit'].astype(int).diff() == 1
689 µs ± 8.24 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
edited 17 hours ago
answered 17 hours ago
Scott BostonScott Boston
57.1k73258
57.1k73258
2
Nice, maybe performance in large data should be interesting.
– jezrael
17 hours ago
add a comment |
2
Nice, maybe performance in large data should be interesting.
– jezrael
17 hours ago
2
2
Nice, maybe performance in large data should be interesting.
– jezrael
17 hours ago
Nice, maybe performance in large data should be interesting.
– jezrael
17 hours ago
add a comment |
Also this can be done by using simple difference between the series and it's shifted series by 1 period :
df['hit_first'] = df['is_hit']-df['is_hit'].shift()==1
1
The use ofnp.where
here is quite pointless.
– miradulo
11 hours ago
Yes I understood. Thanks :)
– Loochie
9 hours ago
While this code may answer the question, providing additional context regarding how and/or why it solves the problem would improve the answer's long-term value.
– DebanjanB
9 hours ago
add a comment |
Also this can be done by using simple difference between the series and it's shifted series by 1 period :
df['hit_first'] = df['is_hit']-df['is_hit'].shift()==1
1
The use ofnp.where
here is quite pointless.
– miradulo
11 hours ago
Yes I understood. Thanks :)
– Loochie
9 hours ago
While this code may answer the question, providing additional context regarding how and/or why it solves the problem would improve the answer's long-term value.
– DebanjanB
9 hours ago
add a comment |
Also this can be done by using simple difference between the series and it's shifted series by 1 period :
df['hit_first'] = df['is_hit']-df['is_hit'].shift()==1
Also this can be done by using simple difference between the series and it's shifted series by 1 period :
df['hit_first'] = df['is_hit']-df['is_hit'].shift()==1
edited 7 hours ago
answered 17 hours ago
LoochieLoochie
776310
776310
1
The use ofnp.where
here is quite pointless.
– miradulo
11 hours ago
Yes I understood. Thanks :)
– Loochie
9 hours ago
While this code may answer the question, providing additional context regarding how and/or why it solves the problem would improve the answer's long-term value.
– DebanjanB
9 hours ago
add a comment |
1
The use ofnp.where
here is quite pointless.
– miradulo
11 hours ago
Yes I understood. Thanks :)
– Loochie
9 hours ago
While this code may answer the question, providing additional context regarding how and/or why it solves the problem would improve the answer's long-term value.
– DebanjanB
9 hours ago
1
1
The use of
np.where
here is quite pointless.– miradulo
11 hours ago
The use of
np.where
here is quite pointless.– miradulo
11 hours ago
Yes I understood. Thanks :)
– Loochie
9 hours ago
Yes I understood. Thanks :)
– Loochie
9 hours ago
While this code may answer the question, providing additional context regarding how and/or why it solves the problem would improve the answer's long-term value.
– DebanjanB
9 hours ago
While this code may answer the question, providing additional context regarding how and/or why it solves the problem would improve the answer's long-term value.
– DebanjanB
9 hours ago
add a comment |
Thanks for contributing an answer to Stack Overflow!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f55377130%2fflag-only-first-row-where-condition-is-met-in-a-dataframe%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown