Flag only first row where condition is met in a DataFrameAdd one row to pandas DataFrameFilter dataframe rows if value in column is in a set list of valuesUse a list of values to select rows from a pandas dataframeHow to drop rows of Pandas DataFrame whose value in certain columns is NaNHow do I get the row count of a Pandas dataframe?Selecting a row of pandas series/dataframe by integer indexHow to iterate over rows in a DataFrame in Pandas?Select rows from a DataFrame based on values in a column in pandasDeleting DataFrame row in Pandas based on column valuer - reorder certain rows if condition is met

How does buying out courses with grant money work?

India just shot down a satellite from the ground. At what altitude range is the resulting debris field?

What happens if you roll doubles 3 times then land on "Go to jail?"

How can I get through very long and very dry, but also very useful technical documents when learning a new tool?

Would a high gravity rocky planet be guaranteed to have an atmosphere?

How do I go from 300 unfinished/half written blog posts, to published posts?

Pole-zeros of a real-valued causal FIR system

Is exact Kanji stroke length important?

Flow chart document symbol

Tiptoe or tiphoof? Adjusting words to better fit fantasy races

Energy of the particles in the particle accelerator

How can a function with a hole (removable discontinuity) equal a function with no hole?

Class Action - which options I have?

What does 算不上 mean in 算不上太美好的日子?

A Rare Riley Riddle

What can we do to stop prior company from asking us questions?

Would this custom Sorcerer variant that can only learn any verbal-component-only spell be unbalanced?

Large drywall patch supports

Shortcut for value of this indefinite integral?

Is the destination of a commercial flight important for the pilot?

Short story about space worker geeks who zone out by 'listening' to radiation from stars

How does it work when somebody invests in my business?

Is there a problem with hiding "forgot password" until it's needed?

Unreliable Magic - Is it worth it?



Flag only first row where condition is met in a DataFrame


Add one row to pandas DataFrameFilter dataframe rows if value in column is in a set list of valuesUse a list of values to select rows from a pandas dataframeHow to drop rows of Pandas DataFrame whose value in certain columns is NaNHow do I get the row count of a Pandas dataframe?Selecting a row of pandas series/dataframe by integer indexHow to iterate over rows in a DataFrame in Pandas?Select rows from a DataFrame based on values in a column in pandasDeleting DataFrame row in Pandas based on column valuer - reorder certain rows if condition is met













8















I have the following DataFrame df, which can be created as follows:



date_today = datetime.now().date()
days = pd.date_range(date_today, date_today + timedelta(19), freq='D')
x = np.arange(0,2*np.pi,0.1*np.pi) # start,stop,step
y = np.sin(x)
df = pd.DataFrame('dates': days, 'vals': y, 'is_hit': abs(y)>0.9)
df = df.set_index('dates')


And which looks like this:



 is_hit vals
dates
2019-03-27 False 0.000000e+00
2019-03-28 False 3.090170e-01
2019-03-29 False 5.877853e-01
2019-03-30 False 8.090170e-01
2019-03-31 True 9.510565e-01
2019-04-01 True 1.000000e+00
2019-04-02 True 9.510565e-01
2019-04-03 False 8.090170e-01
2019-04-04 False 5.877853e-01
2019-04-05 False 3.090170e-01
2019-04-06 False 1.224647e-16
2019-04-07 False -3.090170e-01
2019-04-08 False -5.877853e-01
2019-04-09 False -8.090170e-01
2019-04-10 True -9.510565e-01
2019-04-11 True -1.000000e+00
2019-04-12 True -9.510565e-01
2019-04-13 False -8.090170e-01
2019-04-14 False -5.877853e-01
2019-04-15 False -3.090170e-01


I want to flag the rows where the is_hit condition is True for the first time, such that the expected new column hit_first would be:



 is_hit vals hit_first
dates
2019-03-27 False 0.000000e+00 False
2019-03-28 False 3.090170e-01 False
2019-03-29 False 5.877853e-01 False
2019-03-30 False 8.090170e-01 False
2019-03-31 True 9.510565e-01 True
2019-04-01 True 1.000000e+00 False
2019-04-02 True 9.510565e-01 False
2019-04-03 False 8.090170e-01 False
2019-04-04 False 5.877853e-01 False
2019-04-05 False 3.090170e-01 False
2019-04-06 False 1.224647e-16 False
2019-04-07 False -3.090170e-01 False
2019-04-08 False -5.877853e-01 False
2019-04-09 False -8.090170e-01 False
2019-04-10 True -9.510565e-01 True
2019-04-11 True -1.000000e+00 False
2019-04-12 True -9.510565e-01 False
2019-04-13 False -8.090170e-01 False
2019-04-14 False -5.877853e-01 False
2019-04-15 False -3.090170e-01 False









share|improve this question


























    8















    I have the following DataFrame df, which can be created as follows:



    date_today = datetime.now().date()
    days = pd.date_range(date_today, date_today + timedelta(19), freq='D')
    x = np.arange(0,2*np.pi,0.1*np.pi) # start,stop,step
    y = np.sin(x)
    df = pd.DataFrame('dates': days, 'vals': y, 'is_hit': abs(y)>0.9)
    df = df.set_index('dates')


    And which looks like this:



     is_hit vals
    dates
    2019-03-27 False 0.000000e+00
    2019-03-28 False 3.090170e-01
    2019-03-29 False 5.877853e-01
    2019-03-30 False 8.090170e-01
    2019-03-31 True 9.510565e-01
    2019-04-01 True 1.000000e+00
    2019-04-02 True 9.510565e-01
    2019-04-03 False 8.090170e-01
    2019-04-04 False 5.877853e-01
    2019-04-05 False 3.090170e-01
    2019-04-06 False 1.224647e-16
    2019-04-07 False -3.090170e-01
    2019-04-08 False -5.877853e-01
    2019-04-09 False -8.090170e-01
    2019-04-10 True -9.510565e-01
    2019-04-11 True -1.000000e+00
    2019-04-12 True -9.510565e-01
    2019-04-13 False -8.090170e-01
    2019-04-14 False -5.877853e-01
    2019-04-15 False -3.090170e-01


    I want to flag the rows where the is_hit condition is True for the first time, such that the expected new column hit_first would be:



     is_hit vals hit_first
    dates
    2019-03-27 False 0.000000e+00 False
    2019-03-28 False 3.090170e-01 False
    2019-03-29 False 5.877853e-01 False
    2019-03-30 False 8.090170e-01 False
    2019-03-31 True 9.510565e-01 True
    2019-04-01 True 1.000000e+00 False
    2019-04-02 True 9.510565e-01 False
    2019-04-03 False 8.090170e-01 False
    2019-04-04 False 5.877853e-01 False
    2019-04-05 False 3.090170e-01 False
    2019-04-06 False 1.224647e-16 False
    2019-04-07 False -3.090170e-01 False
    2019-04-08 False -5.877853e-01 False
    2019-04-09 False -8.090170e-01 False
    2019-04-10 True -9.510565e-01 True
    2019-04-11 True -1.000000e+00 False
    2019-04-12 True -9.510565e-01 False
    2019-04-13 False -8.090170e-01 False
    2019-04-14 False -5.877853e-01 False
    2019-04-15 False -3.090170e-01 False









    share|improve this question
























      8












      8








      8








      I have the following DataFrame df, which can be created as follows:



      date_today = datetime.now().date()
      days = pd.date_range(date_today, date_today + timedelta(19), freq='D')
      x = np.arange(0,2*np.pi,0.1*np.pi) # start,stop,step
      y = np.sin(x)
      df = pd.DataFrame('dates': days, 'vals': y, 'is_hit': abs(y)>0.9)
      df = df.set_index('dates')


      And which looks like this:



       is_hit vals
      dates
      2019-03-27 False 0.000000e+00
      2019-03-28 False 3.090170e-01
      2019-03-29 False 5.877853e-01
      2019-03-30 False 8.090170e-01
      2019-03-31 True 9.510565e-01
      2019-04-01 True 1.000000e+00
      2019-04-02 True 9.510565e-01
      2019-04-03 False 8.090170e-01
      2019-04-04 False 5.877853e-01
      2019-04-05 False 3.090170e-01
      2019-04-06 False 1.224647e-16
      2019-04-07 False -3.090170e-01
      2019-04-08 False -5.877853e-01
      2019-04-09 False -8.090170e-01
      2019-04-10 True -9.510565e-01
      2019-04-11 True -1.000000e+00
      2019-04-12 True -9.510565e-01
      2019-04-13 False -8.090170e-01
      2019-04-14 False -5.877853e-01
      2019-04-15 False -3.090170e-01


      I want to flag the rows where the is_hit condition is True for the first time, such that the expected new column hit_first would be:



       is_hit vals hit_first
      dates
      2019-03-27 False 0.000000e+00 False
      2019-03-28 False 3.090170e-01 False
      2019-03-29 False 5.877853e-01 False
      2019-03-30 False 8.090170e-01 False
      2019-03-31 True 9.510565e-01 True
      2019-04-01 True 1.000000e+00 False
      2019-04-02 True 9.510565e-01 False
      2019-04-03 False 8.090170e-01 False
      2019-04-04 False 5.877853e-01 False
      2019-04-05 False 3.090170e-01 False
      2019-04-06 False 1.224647e-16 False
      2019-04-07 False -3.090170e-01 False
      2019-04-08 False -5.877853e-01 False
      2019-04-09 False -8.090170e-01 False
      2019-04-10 True -9.510565e-01 True
      2019-04-11 True -1.000000e+00 False
      2019-04-12 True -9.510565e-01 False
      2019-04-13 False -8.090170e-01 False
      2019-04-14 False -5.877853e-01 False
      2019-04-15 False -3.090170e-01 False









      share|improve this question














      I have the following DataFrame df, which can be created as follows:



      date_today = datetime.now().date()
      days = pd.date_range(date_today, date_today + timedelta(19), freq='D')
      x = np.arange(0,2*np.pi,0.1*np.pi) # start,stop,step
      y = np.sin(x)
      df = pd.DataFrame('dates': days, 'vals': y, 'is_hit': abs(y)>0.9)
      df = df.set_index('dates')


      And which looks like this:



       is_hit vals
      dates
      2019-03-27 False 0.000000e+00
      2019-03-28 False 3.090170e-01
      2019-03-29 False 5.877853e-01
      2019-03-30 False 8.090170e-01
      2019-03-31 True 9.510565e-01
      2019-04-01 True 1.000000e+00
      2019-04-02 True 9.510565e-01
      2019-04-03 False 8.090170e-01
      2019-04-04 False 5.877853e-01
      2019-04-05 False 3.090170e-01
      2019-04-06 False 1.224647e-16
      2019-04-07 False -3.090170e-01
      2019-04-08 False -5.877853e-01
      2019-04-09 False -8.090170e-01
      2019-04-10 True -9.510565e-01
      2019-04-11 True -1.000000e+00
      2019-04-12 True -9.510565e-01
      2019-04-13 False -8.090170e-01
      2019-04-14 False -5.877853e-01
      2019-04-15 False -3.090170e-01


      I want to flag the rows where the is_hit condition is True for the first time, such that the expected new column hit_first would be:



       is_hit vals hit_first
      dates
      2019-03-27 False 0.000000e+00 False
      2019-03-28 False 3.090170e-01 False
      2019-03-29 False 5.877853e-01 False
      2019-03-30 False 8.090170e-01 False
      2019-03-31 True 9.510565e-01 True
      2019-04-01 True 1.000000e+00 False
      2019-04-02 True 9.510565e-01 False
      2019-04-03 False 8.090170e-01 False
      2019-04-04 False 5.877853e-01 False
      2019-04-05 False 3.090170e-01 False
      2019-04-06 False 1.224647e-16 False
      2019-04-07 False -3.090170e-01 False
      2019-04-08 False -5.877853e-01 False
      2019-04-09 False -8.090170e-01 False
      2019-04-10 True -9.510565e-01 True
      2019-04-11 True -1.000000e+00 False
      2019-04-12 True -9.510565e-01 False
      2019-04-13 False -8.090170e-01 False
      2019-04-14 False -5.877853e-01 False
      2019-04-15 False -3.090170e-01 False






      python pandas dataframe






      share|improve this question













      share|improve this question











      share|improve this question




      share|improve this question










      asked 18 hours ago









      JejeBelfortJejeBelfort

      6591624




      6591624






















          4 Answers
          4






          active

          oldest

          votes


















          10














          My suggestion:



          df['hit_first'] = df['is_hit'] & (~df['is_hit']).shift(1)





          share|improve this answer






























            3














            Use Series.shift chained with & for bitwise AND:



            df['hit_first'] = df['is_hit'].ne(df['is_hit'].shift()) & df['is_hit']
            print (df)
            vals is_hit hit_first
            dates
            2019-03-27 0.000000e+00 False False
            2019-03-28 3.090170e-01 False False
            2019-03-29 5.877853e-01 False False
            2019-03-30 8.090170e-01 False False
            2019-03-31 9.510565e-01 True True
            2019-04-01 1.000000e+00 True False
            2019-04-02 9.510565e-01 True False
            2019-04-03 8.090170e-01 False False
            2019-04-04 5.877853e-01 False False
            2019-04-05 3.090170e-01 False False
            2019-04-06 1.224647e-16 False False
            2019-04-07 -3.090170e-01 False False
            2019-04-08 -5.877853e-01 False False
            2019-04-09 -8.090170e-01 False False
            2019-04-10 -9.510565e-01 True True
            2019-04-11 -1.000000e+00 True False
            2019-04-12 -9.510565e-01 True False
            2019-04-13 -8.090170e-01 False False
            2019-04-14 -5.877853e-01 False False
            2019-04-15 -3.090170e-01 False False





            share|improve this answer
































              3














              I also, think you can do it this way:



              df['is_hit'].astype(int).diff() == 1


              Output:



              dates
              2019-03-27 False
              2019-03-28 False
              2019-03-29 False
              2019-03-30 False
              2019-03-31 True
              2019-04-01 False
              2019-04-02 False
              2019-04-03 False
              2019-04-04 False
              2019-04-05 False
              2019-04-06 False
              2019-04-07 False
              2019-04-08 False
              2019-04-09 False
              2019-04-10 True
              2019-04-11 False
              2019-04-12 False
              2019-04-13 False
              2019-04-14 False
              2019-04-15 False
              Name: is_hit, dtype: bool


              Timings:



              %timeit df['is_hit'] & (~df['is_hit']).shift(1)
              1.13 ms ± 5.63 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)

              %timeit df['is_hit'].ne(df['is_hit'].shift()) & df['is_hit']
              908 µs ± 9.53 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)

              %timeit df['is_hit'].astype(int).diff() == 1
              689 µs ± 8.24 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)





              share|improve this answer




















              • 2





                Nice, maybe performance in large data should be interesting.

                – jezrael
                17 hours ago



















              -1














              Also this can be done by using simple difference between the series and it's shifted series by 1 period :



              df['hit_first'] = df['is_hit']-df['is_hit'].shift()==1





              share|improve this answer




















              • 1





                The use of np.where here is quite pointless.

                – miradulo
                11 hours ago











              • Yes I understood. Thanks :)

                – Loochie
                9 hours ago











              • While this code may answer the question, providing additional context regarding how and/or why it solves the problem would improve the answer's long-term value.

                – DebanjanB
                9 hours ago










              Your Answer






              StackExchange.ifUsing("editor", function ()
              StackExchange.using("externalEditor", function ()
              StackExchange.using("snippets", function ()
              StackExchange.snippets.init();
              );
              );
              , "code-snippets");

              StackExchange.ready(function()
              var channelOptions =
              tags: "".split(" "),
              id: "1"
              ;
              initTagRenderer("".split(" "), "".split(" "), channelOptions);

              StackExchange.using("externalEditor", function()
              // Have to fire editor after snippets, if snippets enabled
              if (StackExchange.settings.snippets.snippetsEnabled)
              StackExchange.using("snippets", function()
              createEditor();
              );

              else
              createEditor();

              );

              function createEditor()
              StackExchange.prepareEditor(
              heartbeatType: 'answer',
              autoActivateHeartbeat: false,
              convertImagesToLinks: true,
              noModals: true,
              showLowRepImageUploadWarning: true,
              reputationToPostImages: 10,
              bindNavPrevention: true,
              postfix: "",
              imageUploader:
              brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
              contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
              allowUrls: true
              ,
              onDemand: true,
              discardSelector: ".discard-answer"
              ,immediatelyShowMarkdownHelp:true
              );



              );













              draft saved

              draft discarded


















              StackExchange.ready(
              function ()
              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f55377130%2fflag-only-first-row-where-condition-is-met-in-a-dataframe%23new-answer', 'question_page');

              );

              Post as a guest















              Required, but never shown

























              4 Answers
              4






              active

              oldest

              votes








              4 Answers
              4






              active

              oldest

              votes









              active

              oldest

              votes






              active

              oldest

              votes









              10














              My suggestion:



              df['hit_first'] = df['is_hit'] & (~df['is_hit']).shift(1)





              share|improve this answer



























                10














                My suggestion:



                df['hit_first'] = df['is_hit'] & (~df['is_hit']).shift(1)





                share|improve this answer

























                  10












                  10








                  10







                  My suggestion:



                  df['hit_first'] = df['is_hit'] & (~df['is_hit']).shift(1)





                  share|improve this answer













                  My suggestion:



                  df['hit_first'] = df['is_hit'] & (~df['is_hit']).shift(1)






                  share|improve this answer












                  share|improve this answer



                  share|improve this answer










                  answered 17 hours ago









                  ecortazarecortazar

                  7867




                  7867























                      3














                      Use Series.shift chained with & for bitwise AND:



                      df['hit_first'] = df['is_hit'].ne(df['is_hit'].shift()) & df['is_hit']
                      print (df)
                      vals is_hit hit_first
                      dates
                      2019-03-27 0.000000e+00 False False
                      2019-03-28 3.090170e-01 False False
                      2019-03-29 5.877853e-01 False False
                      2019-03-30 8.090170e-01 False False
                      2019-03-31 9.510565e-01 True True
                      2019-04-01 1.000000e+00 True False
                      2019-04-02 9.510565e-01 True False
                      2019-04-03 8.090170e-01 False False
                      2019-04-04 5.877853e-01 False False
                      2019-04-05 3.090170e-01 False False
                      2019-04-06 1.224647e-16 False False
                      2019-04-07 -3.090170e-01 False False
                      2019-04-08 -5.877853e-01 False False
                      2019-04-09 -8.090170e-01 False False
                      2019-04-10 -9.510565e-01 True True
                      2019-04-11 -1.000000e+00 True False
                      2019-04-12 -9.510565e-01 True False
                      2019-04-13 -8.090170e-01 False False
                      2019-04-14 -5.877853e-01 False False
                      2019-04-15 -3.090170e-01 False False





                      share|improve this answer





























                        3














                        Use Series.shift chained with & for bitwise AND:



                        df['hit_first'] = df['is_hit'].ne(df['is_hit'].shift()) & df['is_hit']
                        print (df)
                        vals is_hit hit_first
                        dates
                        2019-03-27 0.000000e+00 False False
                        2019-03-28 3.090170e-01 False False
                        2019-03-29 5.877853e-01 False False
                        2019-03-30 8.090170e-01 False False
                        2019-03-31 9.510565e-01 True True
                        2019-04-01 1.000000e+00 True False
                        2019-04-02 9.510565e-01 True False
                        2019-04-03 8.090170e-01 False False
                        2019-04-04 5.877853e-01 False False
                        2019-04-05 3.090170e-01 False False
                        2019-04-06 1.224647e-16 False False
                        2019-04-07 -3.090170e-01 False False
                        2019-04-08 -5.877853e-01 False False
                        2019-04-09 -8.090170e-01 False False
                        2019-04-10 -9.510565e-01 True True
                        2019-04-11 -1.000000e+00 True False
                        2019-04-12 -9.510565e-01 True False
                        2019-04-13 -8.090170e-01 False False
                        2019-04-14 -5.877853e-01 False False
                        2019-04-15 -3.090170e-01 False False





                        share|improve this answer



























                          3












                          3








                          3







                          Use Series.shift chained with & for bitwise AND:



                          df['hit_first'] = df['is_hit'].ne(df['is_hit'].shift()) & df['is_hit']
                          print (df)
                          vals is_hit hit_first
                          dates
                          2019-03-27 0.000000e+00 False False
                          2019-03-28 3.090170e-01 False False
                          2019-03-29 5.877853e-01 False False
                          2019-03-30 8.090170e-01 False False
                          2019-03-31 9.510565e-01 True True
                          2019-04-01 1.000000e+00 True False
                          2019-04-02 9.510565e-01 True False
                          2019-04-03 8.090170e-01 False False
                          2019-04-04 5.877853e-01 False False
                          2019-04-05 3.090170e-01 False False
                          2019-04-06 1.224647e-16 False False
                          2019-04-07 -3.090170e-01 False False
                          2019-04-08 -5.877853e-01 False False
                          2019-04-09 -8.090170e-01 False False
                          2019-04-10 -9.510565e-01 True True
                          2019-04-11 -1.000000e+00 True False
                          2019-04-12 -9.510565e-01 True False
                          2019-04-13 -8.090170e-01 False False
                          2019-04-14 -5.877853e-01 False False
                          2019-04-15 -3.090170e-01 False False





                          share|improve this answer















                          Use Series.shift chained with & for bitwise AND:



                          df['hit_first'] = df['is_hit'].ne(df['is_hit'].shift()) & df['is_hit']
                          print (df)
                          vals is_hit hit_first
                          dates
                          2019-03-27 0.000000e+00 False False
                          2019-03-28 3.090170e-01 False False
                          2019-03-29 5.877853e-01 False False
                          2019-03-30 8.090170e-01 False False
                          2019-03-31 9.510565e-01 True True
                          2019-04-01 1.000000e+00 True False
                          2019-04-02 9.510565e-01 True False
                          2019-04-03 8.090170e-01 False False
                          2019-04-04 5.877853e-01 False False
                          2019-04-05 3.090170e-01 False False
                          2019-04-06 1.224647e-16 False False
                          2019-04-07 -3.090170e-01 False False
                          2019-04-08 -5.877853e-01 False False
                          2019-04-09 -8.090170e-01 False False
                          2019-04-10 -9.510565e-01 True True
                          2019-04-11 -1.000000e+00 True False
                          2019-04-12 -9.510565e-01 True False
                          2019-04-13 -8.090170e-01 False False
                          2019-04-14 -5.877853e-01 False False
                          2019-04-15 -3.090170e-01 False False






                          share|improve this answer














                          share|improve this answer



                          share|improve this answer








                          edited 17 hours ago

























                          answered 17 hours ago









                          jezraeljezrael

                          352k26316391




                          352k26316391





















                              3














                              I also, think you can do it this way:



                              df['is_hit'].astype(int).diff() == 1


                              Output:



                              dates
                              2019-03-27 False
                              2019-03-28 False
                              2019-03-29 False
                              2019-03-30 False
                              2019-03-31 True
                              2019-04-01 False
                              2019-04-02 False
                              2019-04-03 False
                              2019-04-04 False
                              2019-04-05 False
                              2019-04-06 False
                              2019-04-07 False
                              2019-04-08 False
                              2019-04-09 False
                              2019-04-10 True
                              2019-04-11 False
                              2019-04-12 False
                              2019-04-13 False
                              2019-04-14 False
                              2019-04-15 False
                              Name: is_hit, dtype: bool


                              Timings:



                              %timeit df['is_hit'] & (~df['is_hit']).shift(1)
                              1.13 ms ± 5.63 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)

                              %timeit df['is_hit'].ne(df['is_hit'].shift()) & df['is_hit']
                              908 µs ± 9.53 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)

                              %timeit df['is_hit'].astype(int).diff() == 1
                              689 µs ± 8.24 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)





                              share|improve this answer




















                              • 2





                                Nice, maybe performance in large data should be interesting.

                                – jezrael
                                17 hours ago
















                              3














                              I also, think you can do it this way:



                              df['is_hit'].astype(int).diff() == 1


                              Output:



                              dates
                              2019-03-27 False
                              2019-03-28 False
                              2019-03-29 False
                              2019-03-30 False
                              2019-03-31 True
                              2019-04-01 False
                              2019-04-02 False
                              2019-04-03 False
                              2019-04-04 False
                              2019-04-05 False
                              2019-04-06 False
                              2019-04-07 False
                              2019-04-08 False
                              2019-04-09 False
                              2019-04-10 True
                              2019-04-11 False
                              2019-04-12 False
                              2019-04-13 False
                              2019-04-14 False
                              2019-04-15 False
                              Name: is_hit, dtype: bool


                              Timings:



                              %timeit df['is_hit'] & (~df['is_hit']).shift(1)
                              1.13 ms ± 5.63 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)

                              %timeit df['is_hit'].ne(df['is_hit'].shift()) & df['is_hit']
                              908 µs ± 9.53 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)

                              %timeit df['is_hit'].astype(int).diff() == 1
                              689 µs ± 8.24 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)





                              share|improve this answer




















                              • 2





                                Nice, maybe performance in large data should be interesting.

                                – jezrael
                                17 hours ago














                              3












                              3








                              3







                              I also, think you can do it this way:



                              df['is_hit'].astype(int).diff() == 1


                              Output:



                              dates
                              2019-03-27 False
                              2019-03-28 False
                              2019-03-29 False
                              2019-03-30 False
                              2019-03-31 True
                              2019-04-01 False
                              2019-04-02 False
                              2019-04-03 False
                              2019-04-04 False
                              2019-04-05 False
                              2019-04-06 False
                              2019-04-07 False
                              2019-04-08 False
                              2019-04-09 False
                              2019-04-10 True
                              2019-04-11 False
                              2019-04-12 False
                              2019-04-13 False
                              2019-04-14 False
                              2019-04-15 False
                              Name: is_hit, dtype: bool


                              Timings:



                              %timeit df['is_hit'] & (~df['is_hit']).shift(1)
                              1.13 ms ± 5.63 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)

                              %timeit df['is_hit'].ne(df['is_hit'].shift()) & df['is_hit']
                              908 µs ± 9.53 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)

                              %timeit df['is_hit'].astype(int).diff() == 1
                              689 µs ± 8.24 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)





                              share|improve this answer















                              I also, think you can do it this way:



                              df['is_hit'].astype(int).diff() == 1


                              Output:



                              dates
                              2019-03-27 False
                              2019-03-28 False
                              2019-03-29 False
                              2019-03-30 False
                              2019-03-31 True
                              2019-04-01 False
                              2019-04-02 False
                              2019-04-03 False
                              2019-04-04 False
                              2019-04-05 False
                              2019-04-06 False
                              2019-04-07 False
                              2019-04-08 False
                              2019-04-09 False
                              2019-04-10 True
                              2019-04-11 False
                              2019-04-12 False
                              2019-04-13 False
                              2019-04-14 False
                              2019-04-15 False
                              Name: is_hit, dtype: bool


                              Timings:



                              %timeit df['is_hit'] & (~df['is_hit']).shift(1)
                              1.13 ms ± 5.63 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)

                              %timeit df['is_hit'].ne(df['is_hit'].shift()) & df['is_hit']
                              908 µs ± 9.53 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)

                              %timeit df['is_hit'].astype(int).diff() == 1
                              689 µs ± 8.24 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)






                              share|improve this answer














                              share|improve this answer



                              share|improve this answer








                              edited 17 hours ago

























                              answered 17 hours ago









                              Scott BostonScott Boston

                              57.1k73258




                              57.1k73258







                              • 2





                                Nice, maybe performance in large data should be interesting.

                                – jezrael
                                17 hours ago













                              • 2





                                Nice, maybe performance in large data should be interesting.

                                – jezrael
                                17 hours ago








                              2




                              2





                              Nice, maybe performance in large data should be interesting.

                              – jezrael
                              17 hours ago






                              Nice, maybe performance in large data should be interesting.

                              – jezrael
                              17 hours ago












                              -1














                              Also this can be done by using simple difference between the series and it's shifted series by 1 period :



                              df['hit_first'] = df['is_hit']-df['is_hit'].shift()==1





                              share|improve this answer




















                              • 1





                                The use of np.where here is quite pointless.

                                – miradulo
                                11 hours ago











                              • Yes I understood. Thanks :)

                                – Loochie
                                9 hours ago











                              • While this code may answer the question, providing additional context regarding how and/or why it solves the problem would improve the answer's long-term value.

                                – DebanjanB
                                9 hours ago















                              -1














                              Also this can be done by using simple difference between the series and it's shifted series by 1 period :



                              df['hit_first'] = df['is_hit']-df['is_hit'].shift()==1





                              share|improve this answer




















                              • 1





                                The use of np.where here is quite pointless.

                                – miradulo
                                11 hours ago











                              • Yes I understood. Thanks :)

                                – Loochie
                                9 hours ago











                              • While this code may answer the question, providing additional context regarding how and/or why it solves the problem would improve the answer's long-term value.

                                – DebanjanB
                                9 hours ago













                              -1












                              -1








                              -1







                              Also this can be done by using simple difference between the series and it's shifted series by 1 period :



                              df['hit_first'] = df['is_hit']-df['is_hit'].shift()==1





                              share|improve this answer















                              Also this can be done by using simple difference between the series and it's shifted series by 1 period :



                              df['hit_first'] = df['is_hit']-df['is_hit'].shift()==1






                              share|improve this answer














                              share|improve this answer



                              share|improve this answer








                              edited 7 hours ago

























                              answered 17 hours ago









                              LoochieLoochie

                              776310




                              776310







                              • 1





                                The use of np.where here is quite pointless.

                                – miradulo
                                11 hours ago











                              • Yes I understood. Thanks :)

                                – Loochie
                                9 hours ago











                              • While this code may answer the question, providing additional context regarding how and/or why it solves the problem would improve the answer's long-term value.

                                – DebanjanB
                                9 hours ago












                              • 1





                                The use of np.where here is quite pointless.

                                – miradulo
                                11 hours ago











                              • Yes I understood. Thanks :)

                                – Loochie
                                9 hours ago











                              • While this code may answer the question, providing additional context regarding how and/or why it solves the problem would improve the answer's long-term value.

                                – DebanjanB
                                9 hours ago







                              1




                              1





                              The use of np.where here is quite pointless.

                              – miradulo
                              11 hours ago





                              The use of np.where here is quite pointless.

                              – miradulo
                              11 hours ago













                              Yes I understood. Thanks :)

                              – Loochie
                              9 hours ago





                              Yes I understood. Thanks :)

                              – Loochie
                              9 hours ago













                              While this code may answer the question, providing additional context regarding how and/or why it solves the problem would improve the answer's long-term value.

                              – DebanjanB
                              9 hours ago





                              While this code may answer the question, providing additional context regarding how and/or why it solves the problem would improve the answer's long-term value.

                              – DebanjanB
                              9 hours ago

















                              draft saved

                              draft discarded
















































                              Thanks for contributing an answer to Stack Overflow!


                              • Please be sure to answer the question. Provide details and share your research!

                              But avoid


                              • Asking for help, clarification, or responding to other answers.

                              • Making statements based on opinion; back them up with references or personal experience.

                              To learn more, see our tips on writing great answers.




                              draft saved


                              draft discarded














                              StackExchange.ready(
                              function ()
                              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f55377130%2fflag-only-first-row-where-condition-is-met-in-a-dataframe%23new-answer', 'question_page');

                              );

                              Post as a guest















                              Required, but never shown





















































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown

































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown







                              Popular posts from this blog

                              រឿង រ៉ូមេអូ និង ហ្ស៊ុយលីយេ សង្ខេបរឿង តួអង្គ បញ្ជីណែនាំ

                              Crop image to path created in TikZ? Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern)Crop an inserted image?TikZ pictures does not appear in posterImage behind and beyond crop marks?Tikz picture as large as possible on A4 PageTransparency vs image compression dilemmaHow to crop background from image automatically?Image does not cropTikzexternal capturing crop marks when externalizing pgfplots?How to include image path that contains a dollar signCrop image with left size given

                              Romeo and Juliet ContentsCharactersSynopsisSourcesDate and textThemes and motifsCriticism and interpretationLegacyScene by sceneSee alsoNotes and referencesSourcesExternal linksNavigation menu"Consumer Price Index (estimate) 1800–"10.2307/28710160037-3222287101610.1093/res/II.5.31910.2307/45967845967810.2307/2869925286992510.1525/jams.1982.35.3.03a00050"Dada Masilo: South African dancer who breaks the rules"10.1093/res/os-XV.57.1610.2307/28680942868094"Sweet Sorrow: Mann-Korman's Romeo and Juliet Closes Sept. 5 at MN's Ordway"the original10.2307/45957745957710.1017/CCOL0521570476.009"Ram Leela box office collections hit massive Rs 100 crore, pulverises prediction"Archived"Broadway Revival of Romeo and Juliet, Starring Orlando Bloom and Condola Rashad, Will Close Dec. 8"Archived10.1075/jhp.7.1.04hon"Wherefore art thou, Romeo? To make us laugh at Navy Pier"the original10.1093/gmo/9781561592630.article.O006772"Ram-leela Review Roundup: Critics Hail Film as Best Adaptation of Romeo and Juliet"Archived10.2307/31946310047-77293194631"Romeo and Juliet get Twitter treatment""Juliet's Nurse by Lois Leveen""Romeo and Juliet: Orlando Bloom's Broadway Debut Released in Theaters for Valentine's Day"Archived"Romeo and Juliet Has No Balcony"10.1093/gmo/9781561592630.article.O00778110.2307/2867423286742310.1076/enst.82.2.115.959510.1080/00138380601042675"A plague o' both your houses: error in GCSE exam paper forces apology""Juliet of the Five O'Clock Shadow, and Other Wonders"10.2307/33912430027-4321339124310.2307/28487440038-7134284874410.2307/29123140149-661129123144728341M"Weekender Guide: Shakespeare on The Drive""balcony"UK public library membership"romeo"UK public library membership10.1017/CCOL9780521844291"Post-Zionist Critique on Israel and the Palestinians Part III: Popular Culture"10.2307/25379071533-86140377-919X2537907"Capulets and Montagues: UK exam board admit mixing names up in Romeo and Juliet paper"Istoria Novellamente Ritrovata di Due Nobili Amanti2027/mdp.390150822329610820-750X"GCSE exam error: Board accidentally rewrites Shakespeare"10.2307/29176390149-66112917639"Exam board apologises after error in English GCSE paper which confused characters in Shakespeare's Romeo and Juliet""From Mariotto and Ganozza to Romeo and Guilietta: Metamorphoses of a Renaissance Tale"10.2307/37323537323510.2307/2867455286745510.2307/28678912867891"10 Questions for Taylor Swift"10.2307/28680922868092"Haymarket Theatre""The Zeffirelli Way: Revealing Talk by Florentine Director""Michael Smuin: 1938-2007 / Prolific dance director had showy career"The Life and Art of Edwin BoothRomeo and JulietRomeo and JulietRomeo and JulietRomeo and JulietEasy Read Romeo and JulietRomeo and Julieteeecb12003684p(data)4099369-3n8211610759dbe00d-a9e2-41a3-b2c1-977dd692899302814385X313670221313670221