Solving Integral Equation by Converting to Differential Equations The Next CEO of Stack OverflowAre there methods to solve coupled integral and integro-differential equations?Voltera equationSolve integral equation by converting to differential equationHow can I solve this integral equation by converting it to a differential equationConverting a integral equation to differential equationSolving integro-differential equation - numericallySolution of Differential equation as an integral equationConverting Differential Operator to Integral Equationreference for converting an integro-differential equation to a differential algebraic equationSolving second order ordinary differential equation with variable constants

Asymptote: 3d graph over a disc

(How) Could a medieval fantasy world survive a magic-induced "nuclear winter"?

If Nick Fury and Coulson already knew about aliens (Kree and Skrull) why did they wait until Thor's appearance to start making weapons?

How to Implement Deterministic Encryption Safely in .NET

Cannot shrink btrfs filesystem although there is still data and metadata space left : ERROR: unable to resize '/home': No space left on device

Can this note be analyzed as a non-chord tone?

Would a grinding machine be a simple and workable propulsion system for an interplanetary spacecraft?

The Ultimate Number Sequence Puzzle

Inductor and Capacitor in Parallel

Won the lottery - how do I keep the money?

What does "shotgun unity" refer to here in this sentence?

Does higher Oxidation/ reduction potential translate to higher energy storage in battery?

Is it OK to decorate a log book cover?

Audio Conversion With ADS1243

What is the process for purifying your home if you believe it may have been previously used for pagan worship?

Traveling with my 5 year old daughter (as the father) without the mother from Germany to Mexico

Is French Guiana a (hard) EU border?

What CSS properties can the br tag have?

What flight has the highest ratio of timezone difference to flight time?

Is it okay to majorly distort historical facts while writing a fiction story?

"Eavesdropping" vs "Listen in on"

What was Carter Burke's job for "the company" in Aliens?

Yu-Gi-Oh cards in Python 3

IC has pull-down resistors on SMBus lines?



Solving Integral Equation by Converting to Differential Equations



The Next CEO of Stack OverflowAre there methods to solve coupled integral and integro-differential equations?Voltera equationSolve integral equation by converting to differential equationHow can I solve this integral equation by converting it to a differential equationConverting a integral equation to differential equationSolving integro-differential equation - numericallySolution of Differential equation as an integral equationConverting Differential Operator to Integral Equationreference for converting an integro-differential equation to a differential algebraic equationSolving second order ordinary differential equation with variable constants










2












$begingroup$


Consider the problem



$$phi(x) = x - int_0^x(x-s)phi(s),ds$$



How can we solve this by converting to a differential equation?










share|cite|improve this question









$endgroup$
















    2












    $begingroup$


    Consider the problem



    $$phi(x) = x - int_0^x(x-s)phi(s),ds$$



    How can we solve this by converting to a differential equation?










    share|cite|improve this question









    $endgroup$














      2












      2








      2





      $begingroup$


      Consider the problem



      $$phi(x) = x - int_0^x(x-s)phi(s),ds$$



      How can we solve this by converting to a differential equation?










      share|cite|improve this question









      $endgroup$




      Consider the problem



      $$phi(x) = x - int_0^x(x-s)phi(s),ds$$



      How can we solve this by converting to a differential equation?







      ordinary-differential-equations integral-equations integro-differential-equations






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked 2 days ago









      LightningStrikeLightningStrike

      555




      555




















          2 Answers
          2






          active

          oldest

          votes


















          4












          $begingroup$

          We have that
          $$phi(x)=x-xint_0^x phi(s) mathrmd s + int_0^x s phi(s)mathrmds$$
          From this, we can see that $phi(0)=0$.
          We can differentiate both sides and use the product rule and the FTC1 to get:
          $$phi'(x)=1-int_0^x phi(s) mathrmds -x phi(x)+xphi(x)$$
          $$phi'(x)=1-int_0^x phi(s) mathrmd s$$
          From this, we can see that $phi'(0)=1$. We can differentiate it again:
          $$phi''(x)=-phi(x)$$
          Which is an alternative definition of the $sin$ function.






          share|cite|improve this answer











          $endgroup$












          • $begingroup$
            In fact, the only valid solution for $phi(x)$ is $sin(x)$ because of the original equation.
            $endgroup$
            – Peter Foreman
            2 days ago










          • $begingroup$
            @PeterForemann Yes. I calculated $phi(0)$ and $phi'(0)$ from the integral equation to avoid the lengthy substitution and integration.
            $endgroup$
            – Botond
            2 days ago











          • $begingroup$
            Thank you for your answer! Do you mind if I ask how you got $phi ''(x) = -phi (x)$ by differentiating $phi ' (x)$? I don't understand the steps taken.
            $endgroup$
            – LightningStrike
            2 days ago










          • $begingroup$
            @LightningStrike Do you see how did I get $phi'(x)=1-int_0^x phi(s) mathrmds$?
            $endgroup$
            – Botond
            2 days ago


















          1












          $begingroup$

          Differentiating both sides using Leibniz rule :



          $$phi '(x)=1-int_0^xphi (s)ds$$



          Differentiate again:



          $$phi ''(x)=-phi (x)$$






          share|cite|improve this answer











          $endgroup$








          • 1




            $begingroup$
            Your answer is great, but Leibniz's rule is an overkill here, because it requires partial derivatives and the proof is based on measure theory.
            $endgroup$
            – Botond
            2 days ago










          • $begingroup$
            may be you are right...but this is a common technique in an introductory course of integral equations.
            $endgroup$
            – logo
            2 days ago











          • $begingroup$
            I didn't take any course in integral equations, but we used Leibniz's rule during a physics course (without a proof), and it's a really useful tool to have. And we don't really know which is the appropriate solution to the questioner.
            $endgroup$
            – Botond
            2 days ago












          Your Answer





          StackExchange.ifUsing("editor", function ()
          return StackExchange.using("mathjaxEditing", function ()
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          );
          );
          , "mathjax-editing");

          StackExchange.ready(function()
          var channelOptions =
          tags: "".split(" "),
          id: "69"
          ;
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function()
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled)
          StackExchange.using("snippets", function()
          createEditor();
          );

          else
          createEditor();

          );

          function createEditor()
          StackExchange.prepareEditor(
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader:
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          ,
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          );



          );













          draft saved

          draft discarded


















          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3167442%2fsolving-integral-equation-by-converting-to-differential-equations%23new-answer', 'question_page');

          );

          Post as a guest















          Required, but never shown

























          2 Answers
          2






          active

          oldest

          votes








          2 Answers
          2






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          4












          $begingroup$

          We have that
          $$phi(x)=x-xint_0^x phi(s) mathrmd s + int_0^x s phi(s)mathrmds$$
          From this, we can see that $phi(0)=0$.
          We can differentiate both sides and use the product rule and the FTC1 to get:
          $$phi'(x)=1-int_0^x phi(s) mathrmds -x phi(x)+xphi(x)$$
          $$phi'(x)=1-int_0^x phi(s) mathrmd s$$
          From this, we can see that $phi'(0)=1$. We can differentiate it again:
          $$phi''(x)=-phi(x)$$
          Which is an alternative definition of the $sin$ function.






          share|cite|improve this answer











          $endgroup$












          • $begingroup$
            In fact, the only valid solution for $phi(x)$ is $sin(x)$ because of the original equation.
            $endgroup$
            – Peter Foreman
            2 days ago










          • $begingroup$
            @PeterForemann Yes. I calculated $phi(0)$ and $phi'(0)$ from the integral equation to avoid the lengthy substitution and integration.
            $endgroup$
            – Botond
            2 days ago











          • $begingroup$
            Thank you for your answer! Do you mind if I ask how you got $phi ''(x) = -phi (x)$ by differentiating $phi ' (x)$? I don't understand the steps taken.
            $endgroup$
            – LightningStrike
            2 days ago










          • $begingroup$
            @LightningStrike Do you see how did I get $phi'(x)=1-int_0^x phi(s) mathrmds$?
            $endgroup$
            – Botond
            2 days ago















          4












          $begingroup$

          We have that
          $$phi(x)=x-xint_0^x phi(s) mathrmd s + int_0^x s phi(s)mathrmds$$
          From this, we can see that $phi(0)=0$.
          We can differentiate both sides and use the product rule and the FTC1 to get:
          $$phi'(x)=1-int_0^x phi(s) mathrmds -x phi(x)+xphi(x)$$
          $$phi'(x)=1-int_0^x phi(s) mathrmd s$$
          From this, we can see that $phi'(0)=1$. We can differentiate it again:
          $$phi''(x)=-phi(x)$$
          Which is an alternative definition of the $sin$ function.






          share|cite|improve this answer











          $endgroup$












          • $begingroup$
            In fact, the only valid solution for $phi(x)$ is $sin(x)$ because of the original equation.
            $endgroup$
            – Peter Foreman
            2 days ago










          • $begingroup$
            @PeterForemann Yes. I calculated $phi(0)$ and $phi'(0)$ from the integral equation to avoid the lengthy substitution and integration.
            $endgroup$
            – Botond
            2 days ago











          • $begingroup$
            Thank you for your answer! Do you mind if I ask how you got $phi ''(x) = -phi (x)$ by differentiating $phi ' (x)$? I don't understand the steps taken.
            $endgroup$
            – LightningStrike
            2 days ago










          • $begingroup$
            @LightningStrike Do you see how did I get $phi'(x)=1-int_0^x phi(s) mathrmds$?
            $endgroup$
            – Botond
            2 days ago













          4












          4








          4





          $begingroup$

          We have that
          $$phi(x)=x-xint_0^x phi(s) mathrmd s + int_0^x s phi(s)mathrmds$$
          From this, we can see that $phi(0)=0$.
          We can differentiate both sides and use the product rule and the FTC1 to get:
          $$phi'(x)=1-int_0^x phi(s) mathrmds -x phi(x)+xphi(x)$$
          $$phi'(x)=1-int_0^x phi(s) mathrmd s$$
          From this, we can see that $phi'(0)=1$. We can differentiate it again:
          $$phi''(x)=-phi(x)$$
          Which is an alternative definition of the $sin$ function.






          share|cite|improve this answer











          $endgroup$



          We have that
          $$phi(x)=x-xint_0^x phi(s) mathrmd s + int_0^x s phi(s)mathrmds$$
          From this, we can see that $phi(0)=0$.
          We can differentiate both sides and use the product rule and the FTC1 to get:
          $$phi'(x)=1-int_0^x phi(s) mathrmds -x phi(x)+xphi(x)$$
          $$phi'(x)=1-int_0^x phi(s) mathrmd s$$
          From this, we can see that $phi'(0)=1$. We can differentiate it again:
          $$phi''(x)=-phi(x)$$
          Which is an alternative definition of the $sin$ function.







          share|cite|improve this answer














          share|cite|improve this answer



          share|cite|improve this answer








          edited 2 days ago

























          answered 2 days ago









          BotondBotond

          6,49331034




          6,49331034











          • $begingroup$
            In fact, the only valid solution for $phi(x)$ is $sin(x)$ because of the original equation.
            $endgroup$
            – Peter Foreman
            2 days ago










          • $begingroup$
            @PeterForemann Yes. I calculated $phi(0)$ and $phi'(0)$ from the integral equation to avoid the lengthy substitution and integration.
            $endgroup$
            – Botond
            2 days ago











          • $begingroup$
            Thank you for your answer! Do you mind if I ask how you got $phi ''(x) = -phi (x)$ by differentiating $phi ' (x)$? I don't understand the steps taken.
            $endgroup$
            – LightningStrike
            2 days ago










          • $begingroup$
            @LightningStrike Do you see how did I get $phi'(x)=1-int_0^x phi(s) mathrmds$?
            $endgroup$
            – Botond
            2 days ago
















          • $begingroup$
            In fact, the only valid solution for $phi(x)$ is $sin(x)$ because of the original equation.
            $endgroup$
            – Peter Foreman
            2 days ago










          • $begingroup$
            @PeterForemann Yes. I calculated $phi(0)$ and $phi'(0)$ from the integral equation to avoid the lengthy substitution and integration.
            $endgroup$
            – Botond
            2 days ago











          • $begingroup$
            Thank you for your answer! Do you mind if I ask how you got $phi ''(x) = -phi (x)$ by differentiating $phi ' (x)$? I don't understand the steps taken.
            $endgroup$
            – LightningStrike
            2 days ago










          • $begingroup$
            @LightningStrike Do you see how did I get $phi'(x)=1-int_0^x phi(s) mathrmds$?
            $endgroup$
            – Botond
            2 days ago















          $begingroup$
          In fact, the only valid solution for $phi(x)$ is $sin(x)$ because of the original equation.
          $endgroup$
          – Peter Foreman
          2 days ago




          $begingroup$
          In fact, the only valid solution for $phi(x)$ is $sin(x)$ because of the original equation.
          $endgroup$
          – Peter Foreman
          2 days ago












          $begingroup$
          @PeterForemann Yes. I calculated $phi(0)$ and $phi'(0)$ from the integral equation to avoid the lengthy substitution and integration.
          $endgroup$
          – Botond
          2 days ago





          $begingroup$
          @PeterForemann Yes. I calculated $phi(0)$ and $phi'(0)$ from the integral equation to avoid the lengthy substitution and integration.
          $endgroup$
          – Botond
          2 days ago













          $begingroup$
          Thank you for your answer! Do you mind if I ask how you got $phi ''(x) = -phi (x)$ by differentiating $phi ' (x)$? I don't understand the steps taken.
          $endgroup$
          – LightningStrike
          2 days ago




          $begingroup$
          Thank you for your answer! Do you mind if I ask how you got $phi ''(x) = -phi (x)$ by differentiating $phi ' (x)$? I don't understand the steps taken.
          $endgroup$
          – LightningStrike
          2 days ago












          $begingroup$
          @LightningStrike Do you see how did I get $phi'(x)=1-int_0^x phi(s) mathrmds$?
          $endgroup$
          – Botond
          2 days ago




          $begingroup$
          @LightningStrike Do you see how did I get $phi'(x)=1-int_0^x phi(s) mathrmds$?
          $endgroup$
          – Botond
          2 days ago











          1












          $begingroup$

          Differentiating both sides using Leibniz rule :



          $$phi '(x)=1-int_0^xphi (s)ds$$



          Differentiate again:



          $$phi ''(x)=-phi (x)$$






          share|cite|improve this answer











          $endgroup$








          • 1




            $begingroup$
            Your answer is great, but Leibniz's rule is an overkill here, because it requires partial derivatives and the proof is based on measure theory.
            $endgroup$
            – Botond
            2 days ago










          • $begingroup$
            may be you are right...but this is a common technique in an introductory course of integral equations.
            $endgroup$
            – logo
            2 days ago











          • $begingroup$
            I didn't take any course in integral equations, but we used Leibniz's rule during a physics course (without a proof), and it's a really useful tool to have. And we don't really know which is the appropriate solution to the questioner.
            $endgroup$
            – Botond
            2 days ago
















          1












          $begingroup$

          Differentiating both sides using Leibniz rule :



          $$phi '(x)=1-int_0^xphi (s)ds$$



          Differentiate again:



          $$phi ''(x)=-phi (x)$$






          share|cite|improve this answer











          $endgroup$








          • 1




            $begingroup$
            Your answer is great, but Leibniz's rule is an overkill here, because it requires partial derivatives and the proof is based on measure theory.
            $endgroup$
            – Botond
            2 days ago










          • $begingroup$
            may be you are right...but this is a common technique in an introductory course of integral equations.
            $endgroup$
            – logo
            2 days ago











          • $begingroup$
            I didn't take any course in integral equations, but we used Leibniz's rule during a physics course (without a proof), and it's a really useful tool to have. And we don't really know which is the appropriate solution to the questioner.
            $endgroup$
            – Botond
            2 days ago














          1












          1








          1





          $begingroup$

          Differentiating both sides using Leibniz rule :



          $$phi '(x)=1-int_0^xphi (s)ds$$



          Differentiate again:



          $$phi ''(x)=-phi (x)$$






          share|cite|improve this answer











          $endgroup$



          Differentiating both sides using Leibniz rule :



          $$phi '(x)=1-int_0^xphi (s)ds$$



          Differentiate again:



          $$phi ''(x)=-phi (x)$$







          share|cite|improve this answer














          share|cite|improve this answer



          share|cite|improve this answer








          edited 2 days ago

























          answered 2 days ago









          logologo

          1268




          1268







          • 1




            $begingroup$
            Your answer is great, but Leibniz's rule is an overkill here, because it requires partial derivatives and the proof is based on measure theory.
            $endgroup$
            – Botond
            2 days ago










          • $begingroup$
            may be you are right...but this is a common technique in an introductory course of integral equations.
            $endgroup$
            – logo
            2 days ago











          • $begingroup$
            I didn't take any course in integral equations, but we used Leibniz's rule during a physics course (without a proof), and it's a really useful tool to have. And we don't really know which is the appropriate solution to the questioner.
            $endgroup$
            – Botond
            2 days ago













          • 1




            $begingroup$
            Your answer is great, but Leibniz's rule is an overkill here, because it requires partial derivatives and the proof is based on measure theory.
            $endgroup$
            – Botond
            2 days ago










          • $begingroup$
            may be you are right...but this is a common technique in an introductory course of integral equations.
            $endgroup$
            – logo
            2 days ago











          • $begingroup$
            I didn't take any course in integral equations, but we used Leibniz's rule during a physics course (without a proof), and it's a really useful tool to have. And we don't really know which is the appropriate solution to the questioner.
            $endgroup$
            – Botond
            2 days ago








          1




          1




          $begingroup$
          Your answer is great, but Leibniz's rule is an overkill here, because it requires partial derivatives and the proof is based on measure theory.
          $endgroup$
          – Botond
          2 days ago




          $begingroup$
          Your answer is great, but Leibniz's rule is an overkill here, because it requires partial derivatives and the proof is based on measure theory.
          $endgroup$
          – Botond
          2 days ago












          $begingroup$
          may be you are right...but this is a common technique in an introductory course of integral equations.
          $endgroup$
          – logo
          2 days ago





          $begingroup$
          may be you are right...but this is a common technique in an introductory course of integral equations.
          $endgroup$
          – logo
          2 days ago













          $begingroup$
          I didn't take any course in integral equations, but we used Leibniz's rule during a physics course (without a proof), and it's a really useful tool to have. And we don't really know which is the appropriate solution to the questioner.
          $endgroup$
          – Botond
          2 days ago





          $begingroup$
          I didn't take any course in integral equations, but we used Leibniz's rule during a physics course (without a proof), and it's a really useful tool to have. And we don't really know which is the appropriate solution to the questioner.
          $endgroup$
          – Botond
          2 days ago


















          draft saved

          draft discarded
















































          Thanks for contributing an answer to Mathematics Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid


          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.

          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3167442%2fsolving-integral-equation-by-converting-to-differential-equations%23new-answer', 'question_page');

          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          Crop image to path created in TikZ? Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern)Crop an inserted image?TikZ pictures does not appear in posterImage behind and beyond crop marks?Tikz picture as large as possible on A4 PageTransparency vs image compression dilemmaHow to crop background from image automatically?Image does not cropTikzexternal capturing crop marks when externalizing pgfplots?How to include image path that contains a dollar signCrop image with left size given

          រឿង រ៉ូមេអូ និង ហ្ស៊ុយលីយេ សង្ខេបរឿង តួអង្គ បញ្ជីណែនាំ

          Ромео және Джульетта Мазмұны Қысқаша сипаттамасы Кейіпкерлері Кино Дереккөздер Бағыттау мәзірі