Solving Integral Equation by Converting to Differential Equations The Next CEO of Stack OverflowAre there methods to solve coupled integral and integro-differential equations?Voltera equationSolve integral equation by converting to differential equationHow can I solve this integral equation by converting it to a differential equationConverting a integral equation to differential equationSolving integro-differential equation - numericallySolution of Differential equation as an integral equationConverting Differential Operator to Integral Equationreference for converting an integro-differential equation to a differential algebraic equationSolving second order ordinary differential equation with variable constants
Asymptote: 3d graph over a disc
(How) Could a medieval fantasy world survive a magic-induced "nuclear winter"?
If Nick Fury and Coulson already knew about aliens (Kree and Skrull) why did they wait until Thor's appearance to start making weapons?
How to Implement Deterministic Encryption Safely in .NET
Cannot shrink btrfs filesystem although there is still data and metadata space left : ERROR: unable to resize '/home': No space left on device
Can this note be analyzed as a non-chord tone?
Would a grinding machine be a simple and workable propulsion system for an interplanetary spacecraft?
The Ultimate Number Sequence Puzzle
Inductor and Capacitor in Parallel
Won the lottery - how do I keep the money?
What does "shotgun unity" refer to here in this sentence?
Does higher Oxidation/ reduction potential translate to higher energy storage in battery?
Is it OK to decorate a log book cover?
Audio Conversion With ADS1243
What is the process for purifying your home if you believe it may have been previously used for pagan worship?
Traveling with my 5 year old daughter (as the father) without the mother from Germany to Mexico
Is French Guiana a (hard) EU border?
What CSS properties can the br tag have?
What flight has the highest ratio of timezone difference to flight time?
Is it okay to majorly distort historical facts while writing a fiction story?
"Eavesdropping" vs "Listen in on"
What was Carter Burke's job for "the company" in Aliens?
Yu-Gi-Oh cards in Python 3
IC has pull-down resistors on SMBus lines?
Solving Integral Equation by Converting to Differential Equations
The Next CEO of Stack OverflowAre there methods to solve coupled integral and integro-differential equations?Voltera equationSolve integral equation by converting to differential equationHow can I solve this integral equation by converting it to a differential equationConverting a integral equation to differential equationSolving integro-differential equation - numericallySolution of Differential equation as an integral equationConverting Differential Operator to Integral Equationreference for converting an integro-differential equation to a differential algebraic equationSolving second order ordinary differential equation with variable constants
$begingroup$
Consider the problem
$$phi(x) = x - int_0^x(x-s)phi(s),ds$$
How can we solve this by converting to a differential equation?
ordinary-differential-equations integral-equations integro-differential-equations
$endgroup$
add a comment |
$begingroup$
Consider the problem
$$phi(x) = x - int_0^x(x-s)phi(s),ds$$
How can we solve this by converting to a differential equation?
ordinary-differential-equations integral-equations integro-differential-equations
$endgroup$
add a comment |
$begingroup$
Consider the problem
$$phi(x) = x - int_0^x(x-s)phi(s),ds$$
How can we solve this by converting to a differential equation?
ordinary-differential-equations integral-equations integro-differential-equations
$endgroup$
Consider the problem
$$phi(x) = x - int_0^x(x-s)phi(s),ds$$
How can we solve this by converting to a differential equation?
ordinary-differential-equations integral-equations integro-differential-equations
ordinary-differential-equations integral-equations integro-differential-equations
asked 2 days ago
LightningStrikeLightningStrike
555
555
add a comment |
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
We have that
$$phi(x)=x-xint_0^x phi(s) mathrmd s + int_0^x s phi(s)mathrmds$$
From this, we can see that $phi(0)=0$.
We can differentiate both sides and use the product rule and the FTC1 to get:
$$phi'(x)=1-int_0^x phi(s) mathrmds -x phi(x)+xphi(x)$$
$$phi'(x)=1-int_0^x phi(s) mathrmd s$$
From this, we can see that $phi'(0)=1$. We can differentiate it again:
$$phi''(x)=-phi(x)$$
Which is an alternative definition of the $sin$ function.
$endgroup$
$begingroup$
In fact, the only valid solution for $phi(x)$ is $sin(x)$ because of the original equation.
$endgroup$
– Peter Foreman
2 days ago
$begingroup$
@PeterForemann Yes. I calculated $phi(0)$ and $phi'(0)$ from the integral equation to avoid the lengthy substitution and integration.
$endgroup$
– Botond
2 days ago
$begingroup$
Thank you for your answer! Do you mind if I ask how you got $phi ''(x) = -phi (x)$ by differentiating $phi ' (x)$? I don't understand the steps taken.
$endgroup$
– LightningStrike
2 days ago
$begingroup$
@LightningStrike Do you see how did I get $phi'(x)=1-int_0^x phi(s) mathrmds$?
$endgroup$
– Botond
2 days ago
add a comment |
$begingroup$
Differentiating both sides using Leibniz rule :
$$phi '(x)=1-int_0^xphi (s)ds$$
Differentiate again:
$$phi ''(x)=-phi (x)$$
$endgroup$
1
$begingroup$
Your answer is great, but Leibniz's rule is an overkill here, because it requires partial derivatives and the proof is based on measure theory.
$endgroup$
– Botond
2 days ago
$begingroup$
may be you are right...but this is a common technique in an introductory course of integral equations.
$endgroup$
– logo
2 days ago
$begingroup$
I didn't take any course in integral equations, but we used Leibniz's rule during a physics course (without a proof), and it's a really useful tool to have. And we don't really know which is the appropriate solution to the questioner.
$endgroup$
– Botond
2 days ago
add a comment |
StackExchange.ifUsing("editor", function ()
return StackExchange.using("mathjaxEditing", function ()
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
);
);
, "mathjax-editing");
StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "69"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);
else
createEditor();
);
function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);
);
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3167442%2fsolving-integral-equation-by-converting-to-differential-equations%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
We have that
$$phi(x)=x-xint_0^x phi(s) mathrmd s + int_0^x s phi(s)mathrmds$$
From this, we can see that $phi(0)=0$.
We can differentiate both sides and use the product rule and the FTC1 to get:
$$phi'(x)=1-int_0^x phi(s) mathrmds -x phi(x)+xphi(x)$$
$$phi'(x)=1-int_0^x phi(s) mathrmd s$$
From this, we can see that $phi'(0)=1$. We can differentiate it again:
$$phi''(x)=-phi(x)$$
Which is an alternative definition of the $sin$ function.
$endgroup$
$begingroup$
In fact, the only valid solution for $phi(x)$ is $sin(x)$ because of the original equation.
$endgroup$
– Peter Foreman
2 days ago
$begingroup$
@PeterForemann Yes. I calculated $phi(0)$ and $phi'(0)$ from the integral equation to avoid the lengthy substitution and integration.
$endgroup$
– Botond
2 days ago
$begingroup$
Thank you for your answer! Do you mind if I ask how you got $phi ''(x) = -phi (x)$ by differentiating $phi ' (x)$? I don't understand the steps taken.
$endgroup$
– LightningStrike
2 days ago
$begingroup$
@LightningStrike Do you see how did I get $phi'(x)=1-int_0^x phi(s) mathrmds$?
$endgroup$
– Botond
2 days ago
add a comment |
$begingroup$
We have that
$$phi(x)=x-xint_0^x phi(s) mathrmd s + int_0^x s phi(s)mathrmds$$
From this, we can see that $phi(0)=0$.
We can differentiate both sides and use the product rule and the FTC1 to get:
$$phi'(x)=1-int_0^x phi(s) mathrmds -x phi(x)+xphi(x)$$
$$phi'(x)=1-int_0^x phi(s) mathrmd s$$
From this, we can see that $phi'(0)=1$. We can differentiate it again:
$$phi''(x)=-phi(x)$$
Which is an alternative definition of the $sin$ function.
$endgroup$
$begingroup$
In fact, the only valid solution for $phi(x)$ is $sin(x)$ because of the original equation.
$endgroup$
– Peter Foreman
2 days ago
$begingroup$
@PeterForemann Yes. I calculated $phi(0)$ and $phi'(0)$ from the integral equation to avoid the lengthy substitution and integration.
$endgroup$
– Botond
2 days ago
$begingroup$
Thank you for your answer! Do you mind if I ask how you got $phi ''(x) = -phi (x)$ by differentiating $phi ' (x)$? I don't understand the steps taken.
$endgroup$
– LightningStrike
2 days ago
$begingroup$
@LightningStrike Do you see how did I get $phi'(x)=1-int_0^x phi(s) mathrmds$?
$endgroup$
– Botond
2 days ago
add a comment |
$begingroup$
We have that
$$phi(x)=x-xint_0^x phi(s) mathrmd s + int_0^x s phi(s)mathrmds$$
From this, we can see that $phi(0)=0$.
We can differentiate both sides and use the product rule and the FTC1 to get:
$$phi'(x)=1-int_0^x phi(s) mathrmds -x phi(x)+xphi(x)$$
$$phi'(x)=1-int_0^x phi(s) mathrmd s$$
From this, we can see that $phi'(0)=1$. We can differentiate it again:
$$phi''(x)=-phi(x)$$
Which is an alternative definition of the $sin$ function.
$endgroup$
We have that
$$phi(x)=x-xint_0^x phi(s) mathrmd s + int_0^x s phi(s)mathrmds$$
From this, we can see that $phi(0)=0$.
We can differentiate both sides and use the product rule and the FTC1 to get:
$$phi'(x)=1-int_0^x phi(s) mathrmds -x phi(x)+xphi(x)$$
$$phi'(x)=1-int_0^x phi(s) mathrmd s$$
From this, we can see that $phi'(0)=1$. We can differentiate it again:
$$phi''(x)=-phi(x)$$
Which is an alternative definition of the $sin$ function.
edited 2 days ago
answered 2 days ago
BotondBotond
6,49331034
6,49331034
$begingroup$
In fact, the only valid solution for $phi(x)$ is $sin(x)$ because of the original equation.
$endgroup$
– Peter Foreman
2 days ago
$begingroup$
@PeterForemann Yes. I calculated $phi(0)$ and $phi'(0)$ from the integral equation to avoid the lengthy substitution and integration.
$endgroup$
– Botond
2 days ago
$begingroup$
Thank you for your answer! Do you mind if I ask how you got $phi ''(x) = -phi (x)$ by differentiating $phi ' (x)$? I don't understand the steps taken.
$endgroup$
– LightningStrike
2 days ago
$begingroup$
@LightningStrike Do you see how did I get $phi'(x)=1-int_0^x phi(s) mathrmds$?
$endgroup$
– Botond
2 days ago
add a comment |
$begingroup$
In fact, the only valid solution for $phi(x)$ is $sin(x)$ because of the original equation.
$endgroup$
– Peter Foreman
2 days ago
$begingroup$
@PeterForemann Yes. I calculated $phi(0)$ and $phi'(0)$ from the integral equation to avoid the lengthy substitution and integration.
$endgroup$
– Botond
2 days ago
$begingroup$
Thank you for your answer! Do you mind if I ask how you got $phi ''(x) = -phi (x)$ by differentiating $phi ' (x)$? I don't understand the steps taken.
$endgroup$
– LightningStrike
2 days ago
$begingroup$
@LightningStrike Do you see how did I get $phi'(x)=1-int_0^x phi(s) mathrmds$?
$endgroup$
– Botond
2 days ago
$begingroup$
In fact, the only valid solution for $phi(x)$ is $sin(x)$ because of the original equation.
$endgroup$
– Peter Foreman
2 days ago
$begingroup$
In fact, the only valid solution for $phi(x)$ is $sin(x)$ because of the original equation.
$endgroup$
– Peter Foreman
2 days ago
$begingroup$
@PeterForemann Yes. I calculated $phi(0)$ and $phi'(0)$ from the integral equation to avoid the lengthy substitution and integration.
$endgroup$
– Botond
2 days ago
$begingroup$
@PeterForemann Yes. I calculated $phi(0)$ and $phi'(0)$ from the integral equation to avoid the lengthy substitution and integration.
$endgroup$
– Botond
2 days ago
$begingroup$
Thank you for your answer! Do you mind if I ask how you got $phi ''(x) = -phi (x)$ by differentiating $phi ' (x)$? I don't understand the steps taken.
$endgroup$
– LightningStrike
2 days ago
$begingroup$
Thank you for your answer! Do you mind if I ask how you got $phi ''(x) = -phi (x)$ by differentiating $phi ' (x)$? I don't understand the steps taken.
$endgroup$
– LightningStrike
2 days ago
$begingroup$
@LightningStrike Do you see how did I get $phi'(x)=1-int_0^x phi(s) mathrmds$?
$endgroup$
– Botond
2 days ago
$begingroup$
@LightningStrike Do you see how did I get $phi'(x)=1-int_0^x phi(s) mathrmds$?
$endgroup$
– Botond
2 days ago
add a comment |
$begingroup$
Differentiating both sides using Leibniz rule :
$$phi '(x)=1-int_0^xphi (s)ds$$
Differentiate again:
$$phi ''(x)=-phi (x)$$
$endgroup$
1
$begingroup$
Your answer is great, but Leibniz's rule is an overkill here, because it requires partial derivatives and the proof is based on measure theory.
$endgroup$
– Botond
2 days ago
$begingroup$
may be you are right...but this is a common technique in an introductory course of integral equations.
$endgroup$
– logo
2 days ago
$begingroup$
I didn't take any course in integral equations, but we used Leibniz's rule during a physics course (without a proof), and it's a really useful tool to have. And we don't really know which is the appropriate solution to the questioner.
$endgroup$
– Botond
2 days ago
add a comment |
$begingroup$
Differentiating both sides using Leibniz rule :
$$phi '(x)=1-int_0^xphi (s)ds$$
Differentiate again:
$$phi ''(x)=-phi (x)$$
$endgroup$
1
$begingroup$
Your answer is great, but Leibniz's rule is an overkill here, because it requires partial derivatives and the proof is based on measure theory.
$endgroup$
– Botond
2 days ago
$begingroup$
may be you are right...but this is a common technique in an introductory course of integral equations.
$endgroup$
– logo
2 days ago
$begingroup$
I didn't take any course in integral equations, but we used Leibniz's rule during a physics course (without a proof), and it's a really useful tool to have. And we don't really know which is the appropriate solution to the questioner.
$endgroup$
– Botond
2 days ago
add a comment |
$begingroup$
Differentiating both sides using Leibniz rule :
$$phi '(x)=1-int_0^xphi (s)ds$$
Differentiate again:
$$phi ''(x)=-phi (x)$$
$endgroup$
Differentiating both sides using Leibniz rule :
$$phi '(x)=1-int_0^xphi (s)ds$$
Differentiate again:
$$phi ''(x)=-phi (x)$$
edited 2 days ago
answered 2 days ago
logologo
1268
1268
1
$begingroup$
Your answer is great, but Leibniz's rule is an overkill here, because it requires partial derivatives and the proof is based on measure theory.
$endgroup$
– Botond
2 days ago
$begingroup$
may be you are right...but this is a common technique in an introductory course of integral equations.
$endgroup$
– logo
2 days ago
$begingroup$
I didn't take any course in integral equations, but we used Leibniz's rule during a physics course (without a proof), and it's a really useful tool to have. And we don't really know which is the appropriate solution to the questioner.
$endgroup$
– Botond
2 days ago
add a comment |
1
$begingroup$
Your answer is great, but Leibniz's rule is an overkill here, because it requires partial derivatives and the proof is based on measure theory.
$endgroup$
– Botond
2 days ago
$begingroup$
may be you are right...but this is a common technique in an introductory course of integral equations.
$endgroup$
– logo
2 days ago
$begingroup$
I didn't take any course in integral equations, but we used Leibniz's rule during a physics course (without a proof), and it's a really useful tool to have. And we don't really know which is the appropriate solution to the questioner.
$endgroup$
– Botond
2 days ago
1
1
$begingroup$
Your answer is great, but Leibniz's rule is an overkill here, because it requires partial derivatives and the proof is based on measure theory.
$endgroup$
– Botond
2 days ago
$begingroup$
Your answer is great, but Leibniz's rule is an overkill here, because it requires partial derivatives and the proof is based on measure theory.
$endgroup$
– Botond
2 days ago
$begingroup$
may be you are right...but this is a common technique in an introductory course of integral equations.
$endgroup$
– logo
2 days ago
$begingroup$
may be you are right...but this is a common technique in an introductory course of integral equations.
$endgroup$
– logo
2 days ago
$begingroup$
I didn't take any course in integral equations, but we used Leibniz's rule during a physics course (without a proof), and it's a really useful tool to have. And we don't really know which is the appropriate solution to the questioner.
$endgroup$
– Botond
2 days ago
$begingroup$
I didn't take any course in integral equations, but we used Leibniz's rule during a physics course (without a proof), and it's a really useful tool to have. And we don't really know which is the appropriate solution to the questioner.
$endgroup$
– Botond
2 days ago
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3167442%2fsolving-integral-equation-by-converting-to-differential-equations%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown