Linear Path Optimization with Two Dependent Variables The 2019 Stack Overflow Developer Survey Results Are InMinimising sum of consecutive points distances Manhattan metricEvolutionary algorithm for the Physical Travelling Salesman ProblemHow to order objects to minimize non-adjacency costFinding the best combinations between items of 2 arrays in a sequential mannerAlgorithm to collect items before they expireGetting maximum number of pairs in a setMinimizing cost of bus travelAlgorithm for finding the set of minimum coordinate pairsMaximize pairings subject to distance constraintFind minimum time path between two nodesSingle pair shortest path algorithm with time a constraint

Right tool to dig six foot holes?

What is the most effective way of iterating a std::vector and why?

Delete all lines which don't have n characters before delimiter

Falsification in Math vs Science

Am I thawing this London Broil safely?

How to support a colleague who finds meetings extremely tiring?

Does the shape of a die affect the probability of a number being rolled?

Why do we hear so much about the Trump administration deciding to impose and then remove tariffs?

Ubuntu Server install with full GUI

How technical should a Scrum Master be to effectively remove impediments?

Have you ever entered Singapore using a different passport or name?

How come people say “Would of”?

How to answer pointed "are you quitting" questioning when I don't want them to suspect

Resizing object distorts it (Illustrator CC 2018)

Does a dangling wire really electrocute me if I'm standing in water?

What does Linus Torvalds mean when he says that Git "never ever" tracks a file?

Why hard-Brexiteers don't insist on a hard border to prevent illegal immigration after Brexit?

How are circuits which use complex ICs normally simulated?

Identify boardgame from Big movie

What is the accessibility of a package's `Private` context variables?

If a Druid sees an animal’s corpse, can they Wild Shape into that animal?

Why isn't airport relocation done gradually?

What do the Banks children have against barley water?

How to save as into a customized destination on macOS?



Linear Path Optimization with Two Dependent Variables



The 2019 Stack Overflow Developer Survey Results Are InMinimising sum of consecutive points distances Manhattan metricEvolutionary algorithm for the Physical Travelling Salesman ProblemHow to order objects to minimize non-adjacency costFinding the best combinations between items of 2 arrays in a sequential mannerAlgorithm to collect items before they expireGetting maximum number of pairs in a setMinimizing cost of bus travelAlgorithm for finding the set of minimum coordinate pairsMaximize pairings subject to distance constraintFind minimum time path between two nodesSingle pair shortest path algorithm with time a constraint










4












$begingroup$


Alright, so this is a fairly interesting problem I have but also slightly difficult to explain so I will try my best.



There are two runners on a line that goes from $x=0$ to $x=100$. The two runners start at $x=50$. The runners are then given an array of coordinate pairs that they must visit. The catch is, the coordinate pair contains the $x$ value for locations runner 1 and runner 2 must be at the same time. So for example, if they are given a coordinate pair $(40, 70)$, to successfully "complete" that coordinate, runner 1 must go to $x=40$, and runner 2 must go to $x=70$. They can't move on to the next coordinate pair until both have reached their destination.



So given a large array of coordinate pairs, the runners have to visit each coordinate pair in any order they chose. The runners can move at the same time and have the same speed. The trick is how to optimize the order in which they visit the coordinates. For example, if runner 1 is at $x=10$, and runner 2 is at $x=90$, it would be inefficient to chose a coordinate pair like $(80,80)$, because runner 2 would only travel $10$ units, and spend a long time waiting while runner 1 is moving $70$ units. This is sort of like the travelling salesman problem, except there are two people involved dependent on each other, and they can visit any point from any other given point in any order.



Does anyone have any ideas how to create an algorithm that would return the best (or at least good) optimized order in which they would visit these coordinate pairs?










share|cite|improve this question









New contributor




user102516 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$
















    4












    $begingroup$


    Alright, so this is a fairly interesting problem I have but also slightly difficult to explain so I will try my best.



    There are two runners on a line that goes from $x=0$ to $x=100$. The two runners start at $x=50$. The runners are then given an array of coordinate pairs that they must visit. The catch is, the coordinate pair contains the $x$ value for locations runner 1 and runner 2 must be at the same time. So for example, if they are given a coordinate pair $(40, 70)$, to successfully "complete" that coordinate, runner 1 must go to $x=40$, and runner 2 must go to $x=70$. They can't move on to the next coordinate pair until both have reached their destination.



    So given a large array of coordinate pairs, the runners have to visit each coordinate pair in any order they chose. The runners can move at the same time and have the same speed. The trick is how to optimize the order in which they visit the coordinates. For example, if runner 1 is at $x=10$, and runner 2 is at $x=90$, it would be inefficient to chose a coordinate pair like $(80,80)$, because runner 2 would only travel $10$ units, and spend a long time waiting while runner 1 is moving $70$ units. This is sort of like the travelling salesman problem, except there are two people involved dependent on each other, and they can visit any point from any other given point in any order.



    Does anyone have any ideas how to create an algorithm that would return the best (or at least good) optimized order in which they would visit these coordinate pairs?










    share|cite|improve this question









    New contributor




    user102516 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
    Check out our Code of Conduct.







    $endgroup$














      4












      4








      4





      $begingroup$


      Alright, so this is a fairly interesting problem I have but also slightly difficult to explain so I will try my best.



      There are two runners on a line that goes from $x=0$ to $x=100$. The two runners start at $x=50$. The runners are then given an array of coordinate pairs that they must visit. The catch is, the coordinate pair contains the $x$ value for locations runner 1 and runner 2 must be at the same time. So for example, if they are given a coordinate pair $(40, 70)$, to successfully "complete" that coordinate, runner 1 must go to $x=40$, and runner 2 must go to $x=70$. They can't move on to the next coordinate pair until both have reached their destination.



      So given a large array of coordinate pairs, the runners have to visit each coordinate pair in any order they chose. The runners can move at the same time and have the same speed. The trick is how to optimize the order in which they visit the coordinates. For example, if runner 1 is at $x=10$, and runner 2 is at $x=90$, it would be inefficient to chose a coordinate pair like $(80,80)$, because runner 2 would only travel $10$ units, and spend a long time waiting while runner 1 is moving $70$ units. This is sort of like the travelling salesman problem, except there are two people involved dependent on each other, and they can visit any point from any other given point in any order.



      Does anyone have any ideas how to create an algorithm that would return the best (or at least good) optimized order in which they would visit these coordinate pairs?










      share|cite|improve this question









      New contributor




      user102516 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.







      $endgroup$




      Alright, so this is a fairly interesting problem I have but also slightly difficult to explain so I will try my best.



      There are two runners on a line that goes from $x=0$ to $x=100$. The two runners start at $x=50$. The runners are then given an array of coordinate pairs that they must visit. The catch is, the coordinate pair contains the $x$ value for locations runner 1 and runner 2 must be at the same time. So for example, if they are given a coordinate pair $(40, 70)$, to successfully "complete" that coordinate, runner 1 must go to $x=40$, and runner 2 must go to $x=70$. They can't move on to the next coordinate pair until both have reached their destination.



      So given a large array of coordinate pairs, the runners have to visit each coordinate pair in any order they chose. The runners can move at the same time and have the same speed. The trick is how to optimize the order in which they visit the coordinates. For example, if runner 1 is at $x=10$, and runner 2 is at $x=90$, it would be inefficient to chose a coordinate pair like $(80,80)$, because runner 2 would only travel $10$ units, and spend a long time waiting while runner 1 is moving $70$ units. This is sort of like the travelling salesman problem, except there are two people involved dependent on each other, and they can visit any point from any other given point in any order.



      Does anyone have any ideas how to create an algorithm that would return the best (or at least good) optimized order in which they would visit these coordinate pairs?







      algorithms optimization traveling-salesman






      share|cite|improve this question









      New contributor




      user102516 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.











      share|cite|improve this question









      New contributor




      user102516 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.









      share|cite|improve this question




      share|cite|improve this question








      edited Apr 5 at 12:01









      xskxzr

      4,25421033




      4,25421033






      New contributor




      user102516 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.









      asked Apr 5 at 11:08









      user102516user102516

      241




      241




      New contributor




      user102516 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.





      New contributor





      user102516 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.






      user102516 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.




















          2 Answers
          2






          active

          oldest

          votes


















          4












          $begingroup$

          You can consider the 1D-position of the 2 runners as one 2D-position.
          X-coordinate and Y-coordinate for respectively runners 1 and 2. So in your instance, the starting point is (0, 100).



          Then all the goal points coordiantes can have a 2D-position in the same way, for instance (40, 70). Now the Travelling salesman problem has to be solved using the Tchebychev distance (infinite norm). I am pretty sure this is NP-complete.



          A simple heuristic approach may be to always run to the next closest point (greedy nearest neighboor). Or you can either look for a more sophisticated one...






          share|cite|improve this answer









          $endgroup$




















            3












            $begingroup$

            As Vince observes, your problem is TSPP (traveling salesman path problem) on the plane with respect to the $L_infty$ metric. On the plane, the $L_infty$ and $L_1$ metrics are equivalent (the unit balls differ by a rotation of $45^circ$), so your problem is equivalent to TSPP on the plane with respect to the $L_1$ metric. This problem has been addressed on this question.






            share|cite|improve this answer









            $endgroup$








            • 1




              $begingroup$
              For those readers who have less of a background with metrics and unit circles/spheres: Wikipedia article about unit spheres where you can see the $L_infty$ and $L_1$ circles.
              $endgroup$
              – einpoklum
              Apr 5 at 15:31












            Your Answer





            StackExchange.ifUsing("editor", function ()
            return StackExchange.using("mathjaxEditing", function ()
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            );
            );
            , "mathjax-editing");

            StackExchange.ready(function()
            var channelOptions =
            tags: "".split(" "),
            id: "419"
            ;
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function()
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled)
            StackExchange.using("snippets", function()
            createEditor();
            );

            else
            createEditor();

            );

            function createEditor()
            StackExchange.prepareEditor(
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: false,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: null,
            bindNavPrevention: true,
            postfix: "",
            imageUploader:
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            ,
            onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            );



            );






            user102516 is a new contributor. Be nice, and check out our Code of Conduct.









            draft saved

            draft discarded


















            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fcs.stackexchange.com%2fquestions%2f106508%2flinear-path-optimization-with-two-dependent-variables%23new-answer', 'question_page');

            );

            Post as a guest















            Required, but never shown

























            2 Answers
            2






            active

            oldest

            votes








            2 Answers
            2






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            4












            $begingroup$

            You can consider the 1D-position of the 2 runners as one 2D-position.
            X-coordinate and Y-coordinate for respectively runners 1 and 2. So in your instance, the starting point is (0, 100).



            Then all the goal points coordiantes can have a 2D-position in the same way, for instance (40, 70). Now the Travelling salesman problem has to be solved using the Tchebychev distance (infinite norm). I am pretty sure this is NP-complete.



            A simple heuristic approach may be to always run to the next closest point (greedy nearest neighboor). Or you can either look for a more sophisticated one...






            share|cite|improve this answer









            $endgroup$

















              4












              $begingroup$

              You can consider the 1D-position of the 2 runners as one 2D-position.
              X-coordinate and Y-coordinate for respectively runners 1 and 2. So in your instance, the starting point is (0, 100).



              Then all the goal points coordiantes can have a 2D-position in the same way, for instance (40, 70). Now the Travelling salesman problem has to be solved using the Tchebychev distance (infinite norm). I am pretty sure this is NP-complete.



              A simple heuristic approach may be to always run to the next closest point (greedy nearest neighboor). Or you can either look for a more sophisticated one...






              share|cite|improve this answer









              $endgroup$















                4












                4








                4





                $begingroup$

                You can consider the 1D-position of the 2 runners as one 2D-position.
                X-coordinate and Y-coordinate for respectively runners 1 and 2. So in your instance, the starting point is (0, 100).



                Then all the goal points coordiantes can have a 2D-position in the same way, for instance (40, 70). Now the Travelling salesman problem has to be solved using the Tchebychev distance (infinite norm). I am pretty sure this is NP-complete.



                A simple heuristic approach may be to always run to the next closest point (greedy nearest neighboor). Or you can either look for a more sophisticated one...






                share|cite|improve this answer









                $endgroup$



                You can consider the 1D-position of the 2 runners as one 2D-position.
                X-coordinate and Y-coordinate for respectively runners 1 and 2. So in your instance, the starting point is (0, 100).



                Then all the goal points coordiantes can have a 2D-position in the same way, for instance (40, 70). Now the Travelling salesman problem has to be solved using the Tchebychev distance (infinite norm). I am pretty sure this is NP-complete.



                A simple heuristic approach may be to always run to the next closest point (greedy nearest neighboor). Or you can either look for a more sophisticated one...







                share|cite|improve this answer












                share|cite|improve this answer



                share|cite|improve this answer










                answered Apr 5 at 12:20









                VinceVince

                72328




                72328





















                    3












                    $begingroup$

                    As Vince observes, your problem is TSPP (traveling salesman path problem) on the plane with respect to the $L_infty$ metric. On the plane, the $L_infty$ and $L_1$ metrics are equivalent (the unit balls differ by a rotation of $45^circ$), so your problem is equivalent to TSPP on the plane with respect to the $L_1$ metric. This problem has been addressed on this question.






                    share|cite|improve this answer









                    $endgroup$








                    • 1




                      $begingroup$
                      For those readers who have less of a background with metrics and unit circles/spheres: Wikipedia article about unit spheres where you can see the $L_infty$ and $L_1$ circles.
                      $endgroup$
                      – einpoklum
                      Apr 5 at 15:31
















                    3












                    $begingroup$

                    As Vince observes, your problem is TSPP (traveling salesman path problem) on the plane with respect to the $L_infty$ metric. On the plane, the $L_infty$ and $L_1$ metrics are equivalent (the unit balls differ by a rotation of $45^circ$), so your problem is equivalent to TSPP on the plane with respect to the $L_1$ metric. This problem has been addressed on this question.






                    share|cite|improve this answer









                    $endgroup$








                    • 1




                      $begingroup$
                      For those readers who have less of a background with metrics and unit circles/spheres: Wikipedia article about unit spheres where you can see the $L_infty$ and $L_1$ circles.
                      $endgroup$
                      – einpoklum
                      Apr 5 at 15:31














                    3












                    3








                    3





                    $begingroup$

                    As Vince observes, your problem is TSPP (traveling salesman path problem) on the plane with respect to the $L_infty$ metric. On the plane, the $L_infty$ and $L_1$ metrics are equivalent (the unit balls differ by a rotation of $45^circ$), so your problem is equivalent to TSPP on the plane with respect to the $L_1$ metric. This problem has been addressed on this question.






                    share|cite|improve this answer









                    $endgroup$



                    As Vince observes, your problem is TSPP (traveling salesman path problem) on the plane with respect to the $L_infty$ metric. On the plane, the $L_infty$ and $L_1$ metrics are equivalent (the unit balls differ by a rotation of $45^circ$), so your problem is equivalent to TSPP on the plane with respect to the $L_1$ metric. This problem has been addressed on this question.







                    share|cite|improve this answer












                    share|cite|improve this answer



                    share|cite|improve this answer










                    answered Apr 5 at 12:27









                    Yuval FilmusYuval Filmus

                    196k15185349




                    196k15185349







                    • 1




                      $begingroup$
                      For those readers who have less of a background with metrics and unit circles/spheres: Wikipedia article about unit spheres where you can see the $L_infty$ and $L_1$ circles.
                      $endgroup$
                      – einpoklum
                      Apr 5 at 15:31













                    • 1




                      $begingroup$
                      For those readers who have less of a background with metrics and unit circles/spheres: Wikipedia article about unit spheres where you can see the $L_infty$ and $L_1$ circles.
                      $endgroup$
                      – einpoklum
                      Apr 5 at 15:31








                    1




                    1




                    $begingroup$
                    For those readers who have less of a background with metrics and unit circles/spheres: Wikipedia article about unit spheres where you can see the $L_infty$ and $L_1$ circles.
                    $endgroup$
                    – einpoklum
                    Apr 5 at 15:31





                    $begingroup$
                    For those readers who have less of a background with metrics and unit circles/spheres: Wikipedia article about unit spheres where you can see the $L_infty$ and $L_1$ circles.
                    $endgroup$
                    – einpoklum
                    Apr 5 at 15:31











                    user102516 is a new contributor. Be nice, and check out our Code of Conduct.









                    draft saved

                    draft discarded


















                    user102516 is a new contributor. Be nice, and check out our Code of Conduct.












                    user102516 is a new contributor. Be nice, and check out our Code of Conduct.











                    user102516 is a new contributor. Be nice, and check out our Code of Conduct.














                    Thanks for contributing an answer to Computer Science Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid


                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.

                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function ()
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fcs.stackexchange.com%2fquestions%2f106508%2flinear-path-optimization-with-two-dependent-variables%23new-answer', 'question_page');

                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    រឿង រ៉ូមេអូ និង ហ្ស៊ុយលីយេ សង្ខេបរឿង តួអង្គ បញ្ជីណែនាំ

                    Crop image to path created in TikZ? Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern)Crop an inserted image?TikZ pictures does not appear in posterImage behind and beyond crop marks?Tikz picture as large as possible on A4 PageTransparency vs image compression dilemmaHow to crop background from image automatically?Image does not cropTikzexternal capturing crop marks when externalizing pgfplots?How to include image path that contains a dollar signCrop image with left size given

                    Romeo and Juliet ContentsCharactersSynopsisSourcesDate and textThemes and motifsCriticism and interpretationLegacyScene by sceneSee alsoNotes and referencesSourcesExternal linksNavigation menu"Consumer Price Index (estimate) 1800–"10.2307/28710160037-3222287101610.1093/res/II.5.31910.2307/45967845967810.2307/2869925286992510.1525/jams.1982.35.3.03a00050"Dada Masilo: South African dancer who breaks the rules"10.1093/res/os-XV.57.1610.2307/28680942868094"Sweet Sorrow: Mann-Korman's Romeo and Juliet Closes Sept. 5 at MN's Ordway"the original10.2307/45957745957710.1017/CCOL0521570476.009"Ram Leela box office collections hit massive Rs 100 crore, pulverises prediction"Archived"Broadway Revival of Romeo and Juliet, Starring Orlando Bloom and Condola Rashad, Will Close Dec. 8"Archived10.1075/jhp.7.1.04hon"Wherefore art thou, Romeo? To make us laugh at Navy Pier"the original10.1093/gmo/9781561592630.article.O006772"Ram-leela Review Roundup: Critics Hail Film as Best Adaptation of Romeo and Juliet"Archived10.2307/31946310047-77293194631"Romeo and Juliet get Twitter treatment""Juliet's Nurse by Lois Leveen""Romeo and Juliet: Orlando Bloom's Broadway Debut Released in Theaters for Valentine's Day"Archived"Romeo and Juliet Has No Balcony"10.1093/gmo/9781561592630.article.O00778110.2307/2867423286742310.1076/enst.82.2.115.959510.1080/00138380601042675"A plague o' both your houses: error in GCSE exam paper forces apology""Juliet of the Five O'Clock Shadow, and Other Wonders"10.2307/33912430027-4321339124310.2307/28487440038-7134284874410.2307/29123140149-661129123144728341M"Weekender Guide: Shakespeare on The Drive""balcony"UK public library membership"romeo"UK public library membership10.1017/CCOL9780521844291"Post-Zionist Critique on Israel and the Palestinians Part III: Popular Culture"10.2307/25379071533-86140377-919X2537907"Capulets and Montagues: UK exam board admit mixing names up in Romeo and Juliet paper"Istoria Novellamente Ritrovata di Due Nobili Amanti2027/mdp.390150822329610820-750X"GCSE exam error: Board accidentally rewrites Shakespeare"10.2307/29176390149-66112917639"Exam board apologises after error in English GCSE paper which confused characters in Shakespeare's Romeo and Juliet""From Mariotto and Ganozza to Romeo and Guilietta: Metamorphoses of a Renaissance Tale"10.2307/37323537323510.2307/2867455286745510.2307/28678912867891"10 Questions for Taylor Swift"10.2307/28680922868092"Haymarket Theatre""The Zeffirelli Way: Revealing Talk by Florentine Director""Michael Smuin: 1938-2007 / Prolific dance director had showy career"The Life and Art of Edwin BoothRomeo and JulietRomeo and JulietRomeo and JulietRomeo and JulietEasy Read Romeo and JulietRomeo and Julieteeecb12003684p(data)4099369-3n8211610759dbe00d-a9e2-41a3-b2c1-977dd692899302814385X313670221313670221