Hyperbolic PDE in mathematics The 2019 Stack Overflow Developer Survey Results Are InWhat great mathematics are we missing out on because of language barriers?The PDE $u_t=u_xx-u_yy$: The simplest linear second-order PDE that isn't elliptic, parabolic, or hyperbolic.Trichotomies in mathematicsNew research on coding in reverse mathematics?What are trivial objects, in general?Existence and uniqueness of a quasi-linear pde system on a surfaceAsking for Advices for Choosing a Ph.D thesis problem (in PDE area)Pseudolocality outside of geometric PDE?Some Mathematical Questions on Gravitational Waves and Numerical RelativityReplacing the initial conditions for a PDE

Hyperbolic PDE in mathematics



The 2019 Stack Overflow Developer Survey Results Are InWhat great mathematics are we missing out on because of language barriers?The PDE $u_t=u_xx-u_yy$: The simplest linear second-order PDE that isn't elliptic, parabolic, or hyperbolic.Trichotomies in mathematicsNew research on coding in reverse mathematics?What are trivial objects, in general?Existence and uniqueness of a quasi-linear pde system on a surfaceAsking for Advices for Choosing a Ph.D thesis problem (in PDE area)Pseudolocality outside of geometric PDE?Some Mathematical Questions on Gravitational Waves and Numerical RelativityReplacing the initial conditions for a PDE










7












$begingroup$


Hyperbolic PDE (like the wave equation) are roughly speaking, PDE that satisfy the “finite propagation speed of information” property. They are ubiquitous in mathematical physics (essentially, most fundamental laws of nature are hyperbolic).



However, do hyperbolic PDE occur in any other areas of mathematics that do not have ties to the real world ?










share|cite|improve this question









$endgroup$







  • 6




    $begingroup$
    All areas of mathematics have ties with real world, perhaps indirect.
    $endgroup$
    – Alexandre Eremenko
    Apr 5 at 10:35






  • 2




    $begingroup$
    The automorphic wave equation.
    $endgroup$
    – MBN
    Apr 5 at 14:32















7












$begingroup$


Hyperbolic PDE (like the wave equation) are roughly speaking, PDE that satisfy the “finite propagation speed of information” property. They are ubiquitous in mathematical physics (essentially, most fundamental laws of nature are hyperbolic).



However, do hyperbolic PDE occur in any other areas of mathematics that do not have ties to the real world ?










share|cite|improve this question









$endgroup$







  • 6




    $begingroup$
    All areas of mathematics have ties with real world, perhaps indirect.
    $endgroup$
    – Alexandre Eremenko
    Apr 5 at 10:35






  • 2




    $begingroup$
    The automorphic wave equation.
    $endgroup$
    – MBN
    Apr 5 at 14:32













7












7








7





$begingroup$


Hyperbolic PDE (like the wave equation) are roughly speaking, PDE that satisfy the “finite propagation speed of information” property. They are ubiquitous in mathematical physics (essentially, most fundamental laws of nature are hyperbolic).



However, do hyperbolic PDE occur in any other areas of mathematics that do not have ties to the real world ?










share|cite|improve this question









$endgroup$




Hyperbolic PDE (like the wave equation) are roughly speaking, PDE that satisfy the “finite propagation speed of information” property. They are ubiquitous in mathematical physics (essentially, most fundamental laws of nature are hyperbolic).



However, do hyperbolic PDE occur in any other areas of mathematics that do not have ties to the real world ?







ap.analysis-of-pdes soft-question






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked Apr 5 at 7:09









VamsiVamsi

1,6301527




1,6301527







  • 6




    $begingroup$
    All areas of mathematics have ties with real world, perhaps indirect.
    $endgroup$
    – Alexandre Eremenko
    Apr 5 at 10:35






  • 2




    $begingroup$
    The automorphic wave equation.
    $endgroup$
    – MBN
    Apr 5 at 14:32












  • 6




    $begingroup$
    All areas of mathematics have ties with real world, perhaps indirect.
    $endgroup$
    – Alexandre Eremenko
    Apr 5 at 10:35






  • 2




    $begingroup$
    The automorphic wave equation.
    $endgroup$
    – MBN
    Apr 5 at 14:32







6




6




$begingroup$
All areas of mathematics have ties with real world, perhaps indirect.
$endgroup$
– Alexandre Eremenko
Apr 5 at 10:35




$begingroup$
All areas of mathematics have ties with real world, perhaps indirect.
$endgroup$
– Alexandre Eremenko
Apr 5 at 10:35




2




2




$begingroup$
The automorphic wave equation.
$endgroup$
– MBN
Apr 5 at 14:32




$begingroup$
The automorphic wave equation.
$endgroup$
– MBN
Apr 5 at 14:32










2 Answers
2






active

oldest

votes


















4












$begingroup$

Hyperbolic PDEs arise unexpectedly in some differential geometric questions involving prescribed data. What's weird in these cases is that there is no natural time coordinate in the PDEs. Here are some examples:



  1. Bryant; Griffiths; Yang.
    Characteristics and existence of isometric embeddings.
    Duke Math. J. 50 (1983), no. 4, 893–994.


  2. DeTurck, Yang.
    Existence of elastic deformations with prescribed principal strains and triply orthogonal systems.
    Duke Math. J. 51 (1984), no. 2, 243–260. As an aside, the triply orthogonal system result implies the local existence of coordinates on a Riemannian 3-manifold for which the metric tensor is diagonal. This generalizes isothermal coordinates on a Riemannian 2-manifolds.






share|cite|improve this answer









$endgroup$




















    8












    $begingroup$

    I have no example of hyperbolic PDE occuring in say, pure, mathematics. Perhaps one deep reason is that the notion of hyperbolic operator distinguishes a convex cone of directions which is inherently a cone of future. Therefore, there is always a distinction between time-like curves and space-like hypersurfaces ; whence the occurence of the real world. In other words, the notion of time and space in inherent to the realm of hyperbolic differential operators.



    Nevertheless, the theory of hyperbolic PDEs touches mathematics per se in some places. I have in mind the theory of hyperbolic polynomials, discovered by L. Garding. These are principal symbols of hyperbolic operators. A hyperbolic polynomial $P$ of degree $n$ is positive in the future cone $Gamma$, and the function $P^frac1n$ is concave in $Gamma$. An example is $P=det$ in the space of $ntimes n$ symmetric matrices, with $Gamma=bf Sym_n^+$. The $n$-linear $phi$ form associated with $P$ satisfies the inequality
    $$P^frac1n(xi_1)cdots P^frac1n(xi_n)lephi(xi_1,ldots,xi_n),qquadforall xi_1,ldots,xi_ninGamma.$$
    For instance, if $n=2$, this means that the quadratic form $P$ satisfies the converse of Cauchy-Schwarz in the future cone. The polynomial $x_1cdots x_n$ is hyperbolic, its future cone is the first orthant and the corresponding $n$-linear form is nothing but the permanent of a square matrix. The so-called Van der Warden conjecture (now a theorem) is actually a special of a more general problem about hyperbolic polynomials. Through the theory of hyperbolic polynomials, one touches to Real Algebraic Geometry ; this dates back to Petrowsky's school. Actually, O. Oleinik is famous in both PDE and Algebraic Geometry communities.



    I should also mention the theory of lacunae for hyperbolic PDEs, which is a problem in Algebraic Topology. See a Bourbaki seminar by M. Atiyah about that.






    share|cite|improve this answer











    $endgroup$













      Your Answer





      StackExchange.ifUsing("editor", function ()
      return StackExchange.using("mathjaxEditing", function ()
      StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
      StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
      );
      );
      , "mathjax-editing");

      StackExchange.ready(function()
      var channelOptions =
      tags: "".split(" "),
      id: "504"
      ;
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function()
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled)
      StackExchange.using("snippets", function()
      createEditor();
      );

      else
      createEditor();

      );

      function createEditor()
      StackExchange.prepareEditor(
      heartbeatType: 'answer',
      autoActivateHeartbeat: false,
      convertImagesToLinks: true,
      noModals: true,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: 10,
      bindNavPrevention: true,
      postfix: "",
      imageUploader:
      brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
      contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
      allowUrls: true
      ,
      noCode: true, onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      );



      );













      draft saved

      draft discarded


















      StackExchange.ready(
      function ()
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathoverflow.net%2fquestions%2f327204%2fhyperbolic-pde-in-mathematics%23new-answer', 'question_page');

      );

      Post as a guest















      Required, but never shown

























      2 Answers
      2






      active

      oldest

      votes








      2 Answers
      2






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes









      4












      $begingroup$

      Hyperbolic PDEs arise unexpectedly in some differential geometric questions involving prescribed data. What's weird in these cases is that there is no natural time coordinate in the PDEs. Here are some examples:



      1. Bryant; Griffiths; Yang.
        Characteristics and existence of isometric embeddings.
        Duke Math. J. 50 (1983), no. 4, 893–994.


      2. DeTurck, Yang.
        Existence of elastic deformations with prescribed principal strains and triply orthogonal systems.
        Duke Math. J. 51 (1984), no. 2, 243–260. As an aside, the triply orthogonal system result implies the local existence of coordinates on a Riemannian 3-manifold for which the metric tensor is diagonal. This generalizes isothermal coordinates on a Riemannian 2-manifolds.






      share|cite|improve this answer









      $endgroup$

















        4












        $begingroup$

        Hyperbolic PDEs arise unexpectedly in some differential geometric questions involving prescribed data. What's weird in these cases is that there is no natural time coordinate in the PDEs. Here are some examples:



        1. Bryant; Griffiths; Yang.
          Characteristics and existence of isometric embeddings.
          Duke Math. J. 50 (1983), no. 4, 893–994.


        2. DeTurck, Yang.
          Existence of elastic deformations with prescribed principal strains and triply orthogonal systems.
          Duke Math. J. 51 (1984), no. 2, 243–260. As an aside, the triply orthogonal system result implies the local existence of coordinates on a Riemannian 3-manifold for which the metric tensor is diagonal. This generalizes isothermal coordinates on a Riemannian 2-manifolds.






        share|cite|improve this answer









        $endgroup$















          4












          4








          4





          $begingroup$

          Hyperbolic PDEs arise unexpectedly in some differential geometric questions involving prescribed data. What's weird in these cases is that there is no natural time coordinate in the PDEs. Here are some examples:



          1. Bryant; Griffiths; Yang.
            Characteristics and existence of isometric embeddings.
            Duke Math. J. 50 (1983), no. 4, 893–994.


          2. DeTurck, Yang.
            Existence of elastic deformations with prescribed principal strains and triply orthogonal systems.
            Duke Math. J. 51 (1984), no. 2, 243–260. As an aside, the triply orthogonal system result implies the local existence of coordinates on a Riemannian 3-manifold for which the metric tensor is diagonal. This generalizes isothermal coordinates on a Riemannian 2-manifolds.






          share|cite|improve this answer









          $endgroup$



          Hyperbolic PDEs arise unexpectedly in some differential geometric questions involving prescribed data. What's weird in these cases is that there is no natural time coordinate in the PDEs. Here are some examples:



          1. Bryant; Griffiths; Yang.
            Characteristics and existence of isometric embeddings.
            Duke Math. J. 50 (1983), no. 4, 893–994.


          2. DeTurck, Yang.
            Existence of elastic deformations with prescribed principal strains and triply orthogonal systems.
            Duke Math. J. 51 (1984), no. 2, 243–260. As an aside, the triply orthogonal system result implies the local existence of coordinates on a Riemannian 3-manifold for which the metric tensor is diagonal. This generalizes isothermal coordinates on a Riemannian 2-manifolds.







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered Apr 5 at 19:44









          Deane YangDeane Yang

          20.5k562144




          20.5k562144





















              8












              $begingroup$

              I have no example of hyperbolic PDE occuring in say, pure, mathematics. Perhaps one deep reason is that the notion of hyperbolic operator distinguishes a convex cone of directions which is inherently a cone of future. Therefore, there is always a distinction between time-like curves and space-like hypersurfaces ; whence the occurence of the real world. In other words, the notion of time and space in inherent to the realm of hyperbolic differential operators.



              Nevertheless, the theory of hyperbolic PDEs touches mathematics per se in some places. I have in mind the theory of hyperbolic polynomials, discovered by L. Garding. These are principal symbols of hyperbolic operators. A hyperbolic polynomial $P$ of degree $n$ is positive in the future cone $Gamma$, and the function $P^frac1n$ is concave in $Gamma$. An example is $P=det$ in the space of $ntimes n$ symmetric matrices, with $Gamma=bf Sym_n^+$. The $n$-linear $phi$ form associated with $P$ satisfies the inequality
              $$P^frac1n(xi_1)cdots P^frac1n(xi_n)lephi(xi_1,ldots,xi_n),qquadforall xi_1,ldots,xi_ninGamma.$$
              For instance, if $n=2$, this means that the quadratic form $P$ satisfies the converse of Cauchy-Schwarz in the future cone. The polynomial $x_1cdots x_n$ is hyperbolic, its future cone is the first orthant and the corresponding $n$-linear form is nothing but the permanent of a square matrix. The so-called Van der Warden conjecture (now a theorem) is actually a special of a more general problem about hyperbolic polynomials. Through the theory of hyperbolic polynomials, one touches to Real Algebraic Geometry ; this dates back to Petrowsky's school. Actually, O. Oleinik is famous in both PDE and Algebraic Geometry communities.



              I should also mention the theory of lacunae for hyperbolic PDEs, which is a problem in Algebraic Topology. See a Bourbaki seminar by M. Atiyah about that.






              share|cite|improve this answer











              $endgroup$

















                8












                $begingroup$

                I have no example of hyperbolic PDE occuring in say, pure, mathematics. Perhaps one deep reason is that the notion of hyperbolic operator distinguishes a convex cone of directions which is inherently a cone of future. Therefore, there is always a distinction between time-like curves and space-like hypersurfaces ; whence the occurence of the real world. In other words, the notion of time and space in inherent to the realm of hyperbolic differential operators.



                Nevertheless, the theory of hyperbolic PDEs touches mathematics per se in some places. I have in mind the theory of hyperbolic polynomials, discovered by L. Garding. These are principal symbols of hyperbolic operators. A hyperbolic polynomial $P$ of degree $n$ is positive in the future cone $Gamma$, and the function $P^frac1n$ is concave in $Gamma$. An example is $P=det$ in the space of $ntimes n$ symmetric matrices, with $Gamma=bf Sym_n^+$. The $n$-linear $phi$ form associated with $P$ satisfies the inequality
                $$P^frac1n(xi_1)cdots P^frac1n(xi_n)lephi(xi_1,ldots,xi_n),qquadforall xi_1,ldots,xi_ninGamma.$$
                For instance, if $n=2$, this means that the quadratic form $P$ satisfies the converse of Cauchy-Schwarz in the future cone. The polynomial $x_1cdots x_n$ is hyperbolic, its future cone is the first orthant and the corresponding $n$-linear form is nothing but the permanent of a square matrix. The so-called Van der Warden conjecture (now a theorem) is actually a special of a more general problem about hyperbolic polynomials. Through the theory of hyperbolic polynomials, one touches to Real Algebraic Geometry ; this dates back to Petrowsky's school. Actually, O. Oleinik is famous in both PDE and Algebraic Geometry communities.



                I should also mention the theory of lacunae for hyperbolic PDEs, which is a problem in Algebraic Topology. See a Bourbaki seminar by M. Atiyah about that.






                share|cite|improve this answer











                $endgroup$















                  8












                  8








                  8





                  $begingroup$

                  I have no example of hyperbolic PDE occuring in say, pure, mathematics. Perhaps one deep reason is that the notion of hyperbolic operator distinguishes a convex cone of directions which is inherently a cone of future. Therefore, there is always a distinction between time-like curves and space-like hypersurfaces ; whence the occurence of the real world. In other words, the notion of time and space in inherent to the realm of hyperbolic differential operators.



                  Nevertheless, the theory of hyperbolic PDEs touches mathematics per se in some places. I have in mind the theory of hyperbolic polynomials, discovered by L. Garding. These are principal symbols of hyperbolic operators. A hyperbolic polynomial $P$ of degree $n$ is positive in the future cone $Gamma$, and the function $P^frac1n$ is concave in $Gamma$. An example is $P=det$ in the space of $ntimes n$ symmetric matrices, with $Gamma=bf Sym_n^+$. The $n$-linear $phi$ form associated with $P$ satisfies the inequality
                  $$P^frac1n(xi_1)cdots P^frac1n(xi_n)lephi(xi_1,ldots,xi_n),qquadforall xi_1,ldots,xi_ninGamma.$$
                  For instance, if $n=2$, this means that the quadratic form $P$ satisfies the converse of Cauchy-Schwarz in the future cone. The polynomial $x_1cdots x_n$ is hyperbolic, its future cone is the first orthant and the corresponding $n$-linear form is nothing but the permanent of a square matrix. The so-called Van der Warden conjecture (now a theorem) is actually a special of a more general problem about hyperbolic polynomials. Through the theory of hyperbolic polynomials, one touches to Real Algebraic Geometry ; this dates back to Petrowsky's school. Actually, O. Oleinik is famous in both PDE and Algebraic Geometry communities.



                  I should also mention the theory of lacunae for hyperbolic PDEs, which is a problem in Algebraic Topology. See a Bourbaki seminar by M. Atiyah about that.






                  share|cite|improve this answer











                  $endgroup$



                  I have no example of hyperbolic PDE occuring in say, pure, mathematics. Perhaps one deep reason is that the notion of hyperbolic operator distinguishes a convex cone of directions which is inherently a cone of future. Therefore, there is always a distinction between time-like curves and space-like hypersurfaces ; whence the occurence of the real world. In other words, the notion of time and space in inherent to the realm of hyperbolic differential operators.



                  Nevertheless, the theory of hyperbolic PDEs touches mathematics per se in some places. I have in mind the theory of hyperbolic polynomials, discovered by L. Garding. These are principal symbols of hyperbolic operators. A hyperbolic polynomial $P$ of degree $n$ is positive in the future cone $Gamma$, and the function $P^frac1n$ is concave in $Gamma$. An example is $P=det$ in the space of $ntimes n$ symmetric matrices, with $Gamma=bf Sym_n^+$. The $n$-linear $phi$ form associated with $P$ satisfies the inequality
                  $$P^frac1n(xi_1)cdots P^frac1n(xi_n)lephi(xi_1,ldots,xi_n),qquadforall xi_1,ldots,xi_ninGamma.$$
                  For instance, if $n=2$, this means that the quadratic form $P$ satisfies the converse of Cauchy-Schwarz in the future cone. The polynomial $x_1cdots x_n$ is hyperbolic, its future cone is the first orthant and the corresponding $n$-linear form is nothing but the permanent of a square matrix. The so-called Van der Warden conjecture (now a theorem) is actually a special of a more general problem about hyperbolic polynomials. Through the theory of hyperbolic polynomials, one touches to Real Algebraic Geometry ; this dates back to Petrowsky's school. Actually, O. Oleinik is famous in both PDE and Algebraic Geometry communities.



                  I should also mention the theory of lacunae for hyperbolic PDEs, which is a problem in Algebraic Topology. See a Bourbaki seminar by M. Atiyah about that.







                  share|cite|improve this answer














                  share|cite|improve this answer



                  share|cite|improve this answer








                  edited Apr 5 at 12:25

























                  answered Apr 5 at 7:52









                  Denis SerreDenis Serre

                  29.9k795199




                  29.9k795199



























                      draft saved

                      draft discarded
















































                      Thanks for contributing an answer to MathOverflow!


                      • Please be sure to answer the question. Provide details and share your research!

                      But avoid


                      • Asking for help, clarification, or responding to other answers.

                      • Making statements based on opinion; back them up with references or personal experience.

                      Use MathJax to format equations. MathJax reference.


                      To learn more, see our tips on writing great answers.




                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function ()
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathoverflow.net%2fquestions%2f327204%2fhyperbolic-pde-in-mathematics%23new-answer', 'question_page');

                      );

                      Post as a guest















                      Required, but never shown





















































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown

































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown







                      Popular posts from this blog

                      រឿង រ៉ូមេអូ និង ហ្ស៊ុយលីយេ សង្ខេបរឿង តួអង្គ បញ្ជីណែនាំ

                      Crop image to path created in TikZ? Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern)Crop an inserted image?TikZ pictures does not appear in posterImage behind and beyond crop marks?Tikz picture as large as possible on A4 PageTransparency vs image compression dilemmaHow to crop background from image automatically?Image does not cropTikzexternal capturing crop marks when externalizing pgfplots?How to include image path that contains a dollar signCrop image with left size given

                      Romeo and Juliet ContentsCharactersSynopsisSourcesDate and textThemes and motifsCriticism and interpretationLegacyScene by sceneSee alsoNotes and referencesSourcesExternal linksNavigation menu"Consumer Price Index (estimate) 1800–"10.2307/28710160037-3222287101610.1093/res/II.5.31910.2307/45967845967810.2307/2869925286992510.1525/jams.1982.35.3.03a00050"Dada Masilo: South African dancer who breaks the rules"10.1093/res/os-XV.57.1610.2307/28680942868094"Sweet Sorrow: Mann-Korman's Romeo and Juliet Closes Sept. 5 at MN's Ordway"the original10.2307/45957745957710.1017/CCOL0521570476.009"Ram Leela box office collections hit massive Rs 100 crore, pulverises prediction"Archived"Broadway Revival of Romeo and Juliet, Starring Orlando Bloom and Condola Rashad, Will Close Dec. 8"Archived10.1075/jhp.7.1.04hon"Wherefore art thou, Romeo? To make us laugh at Navy Pier"the original10.1093/gmo/9781561592630.article.O006772"Ram-leela Review Roundup: Critics Hail Film as Best Adaptation of Romeo and Juliet"Archived10.2307/31946310047-77293194631"Romeo and Juliet get Twitter treatment""Juliet's Nurse by Lois Leveen""Romeo and Juliet: Orlando Bloom's Broadway Debut Released in Theaters for Valentine's Day"Archived"Romeo and Juliet Has No Balcony"10.1093/gmo/9781561592630.article.O00778110.2307/2867423286742310.1076/enst.82.2.115.959510.1080/00138380601042675"A plague o' both your houses: error in GCSE exam paper forces apology""Juliet of the Five O'Clock Shadow, and Other Wonders"10.2307/33912430027-4321339124310.2307/28487440038-7134284874410.2307/29123140149-661129123144728341M"Weekender Guide: Shakespeare on The Drive""balcony"UK public library membership"romeo"UK public library membership10.1017/CCOL9780521844291"Post-Zionist Critique on Israel and the Palestinians Part III: Popular Culture"10.2307/25379071533-86140377-919X2537907"Capulets and Montagues: UK exam board admit mixing names up in Romeo and Juliet paper"Istoria Novellamente Ritrovata di Due Nobili Amanti2027/mdp.390150822329610820-750X"GCSE exam error: Board accidentally rewrites Shakespeare"10.2307/29176390149-66112917639"Exam board apologises after error in English GCSE paper which confused characters in Shakespeare's Romeo and Juliet""From Mariotto and Ganozza to Romeo and Guilietta: Metamorphoses of a Renaissance Tale"10.2307/37323537323510.2307/2867455286745510.2307/28678912867891"10 Questions for Taylor Swift"10.2307/28680922868092"Haymarket Theatre""The Zeffirelli Way: Revealing Talk by Florentine Director""Michael Smuin: 1938-2007 / Prolific dance director had showy career"The Life and Art of Edwin BoothRomeo and JulietRomeo and JulietRomeo and JulietRomeo and JulietEasy Read Romeo and JulietRomeo and Julieteeecb12003684p(data)4099369-3n8211610759dbe00d-a9e2-41a3-b2c1-977dd692899302814385X313670221313670221