How to Prove P(a) → ∀x(P(x) ∨ ¬(x = a)) using Natural DeductionUsing natural deduction rules give a formal proofIntroductory Natural Deduction QuestionProve A ∨ D from A ∨ (B ∧ C) and (¬ B ∨ ¬ C) ∨ D ( LPL Q6.26) without using --> or material implicationGiven P ∨ ¬ P prove (P → Q) → ((¬ P → Q) → Q) by natural deductionHow to prove ¬(p→q) ⊢ p &¬qDoes anyone have a proof checker they prefer using for modal logic?How do you prove law of excluded middle using tertium non datur?How to prove : (( P → Q ) ∨ ( Q → R )) by natural deductionHow to prove ‘∃xP(x)’ from ‘¬∀x(P(x)→Q(x))’How would i go about using natural deduction to prove this argument is valid?
Modeling an IPv4 Address
Why Is Death Allowed In the Matrix?
In Japanese, what’s the difference between “Tonari ni” (となりに) and “Tsugi” (つぎ)? When would you use one over the other?
Font hinting is lost in Chrome-like browsers (for some languages )
How do I create uniquely male characters?
Can I make popcorn with any corn?
Is it tax fraud for an individual to declare non-taxable revenue as taxable income? (US tax laws)
How is the claim "I am in New York only if I am in America" the same as "If I am in New York, then I am in America?
What are the differences between the usage of 'it' and 'they'?
Can divisibility rules for digits be generalized to sum of digits
How could an uplifted falcon's brain work?
What's the point of deactivating Num Lock on login screens?
"to be prejudice towards/against someone" vs "to be prejudiced against/towards someone"
What would happen to a modern skyscraper if it rains micro blackholes?
Can a Warlock become Neutral Good?
Has the BBC provided arguments for saying Brexit being cancelled is unlikely?
Can an x86 CPU running in real mode be considered to be basically an 8086 CPU?
"You are your self first supporter", a more proper way to say it
Why do I get two different answers for this counting problem?
Why do falling prices hurt debtors?
Python: next in for loop
Test whether all array elements are factors of a number
can i play a electric guitar through a bass amp?
What typically incentivizes a professor to change jobs to a lower ranking university?
How to Prove P(a) → ∀x(P(x) ∨ ¬(x = a)) using Natural Deduction
Using natural deduction rules give a formal proofIntroductory Natural Deduction QuestionProve A ∨ D from A ∨ (B ∧ C) and (¬ B ∨ ¬ C) ∨ D ( LPL Q6.26) without using --> or material implicationGiven P ∨ ¬ P prove (P → Q) → ((¬ P → Q) → Q) by natural deductionHow to prove ¬(p→q) ⊢ p &¬qDoes anyone have a proof checker they prefer using for modal logic?How do you prove law of excluded middle using tertium non datur?How to prove : (( P → Q ) ∨ ( Q → R )) by natural deductionHow to prove ‘∃xP(x)’ from ‘¬∀x(P(x)→Q(x))’How would i go about using natural deduction to prove this argument is valid?
How would a formal Fitch proof look like.
I am given P(a) → ∀x(P(x) ∨ ¬(x = a)) to prove using Natural Deduction of predicate logic.
I am confused on how to proceed with the proof.
Please advice me on how to go about with this.
Thanks in advance
logic proof fitch quantification
New contributor
add a comment |
How would a formal Fitch proof look like.
I am given P(a) → ∀x(P(x) ∨ ¬(x = a)) to prove using Natural Deduction of predicate logic.
I am confused on how to proceed with the proof.
Please advice me on how to go about with this.
Thanks in advance
logic proof fitch quantification
New contributor
add a comment |
How would a formal Fitch proof look like.
I am given P(a) → ∀x(P(x) ∨ ¬(x = a)) to prove using Natural Deduction of predicate logic.
I am confused on how to proceed with the proof.
Please advice me on how to go about with this.
Thanks in advance
logic proof fitch quantification
New contributor
How would a formal Fitch proof look like.
I am given P(a) → ∀x(P(x) ∨ ¬(x = a)) to prove using Natural Deduction of predicate logic.
I am confused on how to proceed with the proof.
Please advice me on how to go about with this.
Thanks in advance
logic proof fitch quantification
logic proof fitch quantification
New contributor
New contributor
New contributor
asked Apr 2 at 23:56
Moey mnmMoey mnm
263
263
New contributor
New contributor
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
HINT: I'll sketch the derivation. Since the theorem is a conditional, try using conditional proof/conditional-introduction by assuming P(a) and trying to derive ∀x(P(x) ∨ ¬(x = a)) from it. Here, to derive it, I would try an indirect proof by assuming the negation ¬∀x(P(x) ∨ ¬(x = a)) and trying to derive a contradiction. Use quantifier equivalence rules to get ∃x¬(P(x) ∨ ¬(x = a)).
The next steps will be a little different depending on your list of rules (quantifier rules typically come with restrictions to ensure the rules are sound, and different texts will use different restrictions). Roughly, we can let y be the individual such that ¬(P(y) ∨ ¬(y = a)). Apply De Morgan's law to get ¬P(y) ∧ (y = a). Since y = a, it must be that ¬P(a), contradicting our assumption that P(a). Hence our contradiction completing the indirect proof of ∀x(P(x) ∨ ¬(x = a)).
Hope this helps!
1
Just as confirmation, your suggestion for how to proceed worked using the following proof checker: proofs.openlogicproject.org
– Frank Hubeny
Apr 3 at 2:44
add a comment |
Your Answer
StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "265"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);
else
createEditor();
);
function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: false,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: null,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);
);
Moey mnm is a new contributor. Be nice, and check out our Code of Conduct.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fphilosophy.stackexchange.com%2fquestions%2f61580%2fhow-to-prove-pa-%25e2%2586%2592-%25e2%2588%2580xpx-%25e2%2588%25a8-%25c2%25acx-a-using-natural-deduction%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
HINT: I'll sketch the derivation. Since the theorem is a conditional, try using conditional proof/conditional-introduction by assuming P(a) and trying to derive ∀x(P(x) ∨ ¬(x = a)) from it. Here, to derive it, I would try an indirect proof by assuming the negation ¬∀x(P(x) ∨ ¬(x = a)) and trying to derive a contradiction. Use quantifier equivalence rules to get ∃x¬(P(x) ∨ ¬(x = a)).
The next steps will be a little different depending on your list of rules (quantifier rules typically come with restrictions to ensure the rules are sound, and different texts will use different restrictions). Roughly, we can let y be the individual such that ¬(P(y) ∨ ¬(y = a)). Apply De Morgan's law to get ¬P(y) ∧ (y = a). Since y = a, it must be that ¬P(a), contradicting our assumption that P(a). Hence our contradiction completing the indirect proof of ∀x(P(x) ∨ ¬(x = a)).
Hope this helps!
1
Just as confirmation, your suggestion for how to proceed worked using the following proof checker: proofs.openlogicproject.org
– Frank Hubeny
Apr 3 at 2:44
add a comment |
HINT: I'll sketch the derivation. Since the theorem is a conditional, try using conditional proof/conditional-introduction by assuming P(a) and trying to derive ∀x(P(x) ∨ ¬(x = a)) from it. Here, to derive it, I would try an indirect proof by assuming the negation ¬∀x(P(x) ∨ ¬(x = a)) and trying to derive a contradiction. Use quantifier equivalence rules to get ∃x¬(P(x) ∨ ¬(x = a)).
The next steps will be a little different depending on your list of rules (quantifier rules typically come with restrictions to ensure the rules are sound, and different texts will use different restrictions). Roughly, we can let y be the individual such that ¬(P(y) ∨ ¬(y = a)). Apply De Morgan's law to get ¬P(y) ∧ (y = a). Since y = a, it must be that ¬P(a), contradicting our assumption that P(a). Hence our contradiction completing the indirect proof of ∀x(P(x) ∨ ¬(x = a)).
Hope this helps!
1
Just as confirmation, your suggestion for how to proceed worked using the following proof checker: proofs.openlogicproject.org
– Frank Hubeny
Apr 3 at 2:44
add a comment |
HINT: I'll sketch the derivation. Since the theorem is a conditional, try using conditional proof/conditional-introduction by assuming P(a) and trying to derive ∀x(P(x) ∨ ¬(x = a)) from it. Here, to derive it, I would try an indirect proof by assuming the negation ¬∀x(P(x) ∨ ¬(x = a)) and trying to derive a contradiction. Use quantifier equivalence rules to get ∃x¬(P(x) ∨ ¬(x = a)).
The next steps will be a little different depending on your list of rules (quantifier rules typically come with restrictions to ensure the rules are sound, and different texts will use different restrictions). Roughly, we can let y be the individual such that ¬(P(y) ∨ ¬(y = a)). Apply De Morgan's law to get ¬P(y) ∧ (y = a). Since y = a, it must be that ¬P(a), contradicting our assumption that P(a). Hence our contradiction completing the indirect proof of ∀x(P(x) ∨ ¬(x = a)).
Hope this helps!
HINT: I'll sketch the derivation. Since the theorem is a conditional, try using conditional proof/conditional-introduction by assuming P(a) and trying to derive ∀x(P(x) ∨ ¬(x = a)) from it. Here, to derive it, I would try an indirect proof by assuming the negation ¬∀x(P(x) ∨ ¬(x = a)) and trying to derive a contradiction. Use quantifier equivalence rules to get ∃x¬(P(x) ∨ ¬(x = a)).
The next steps will be a little different depending on your list of rules (quantifier rules typically come with restrictions to ensure the rules are sound, and different texts will use different restrictions). Roughly, we can let y be the individual such that ¬(P(y) ∨ ¬(y = a)). Apply De Morgan's law to get ¬P(y) ∧ (y = a). Since y = a, it must be that ¬P(a), contradicting our assumption that P(a). Hence our contradiction completing the indirect proof of ∀x(P(x) ∨ ¬(x = a)).
Hope this helps!
edited Apr 3 at 18:36
answered Apr 3 at 1:12
AdamAdam
5008
5008
1
Just as confirmation, your suggestion for how to proceed worked using the following proof checker: proofs.openlogicproject.org
– Frank Hubeny
Apr 3 at 2:44
add a comment |
1
Just as confirmation, your suggestion for how to proceed worked using the following proof checker: proofs.openlogicproject.org
– Frank Hubeny
Apr 3 at 2:44
1
1
Just as confirmation, your suggestion for how to proceed worked using the following proof checker: proofs.openlogicproject.org
– Frank Hubeny
Apr 3 at 2:44
Just as confirmation, your suggestion for how to proceed worked using the following proof checker: proofs.openlogicproject.org
– Frank Hubeny
Apr 3 at 2:44
add a comment |
Moey mnm is a new contributor. Be nice, and check out our Code of Conduct.
Moey mnm is a new contributor. Be nice, and check out our Code of Conduct.
Moey mnm is a new contributor. Be nice, and check out our Code of Conduct.
Moey mnm is a new contributor. Be nice, and check out our Code of Conduct.
Thanks for contributing an answer to Philosophy Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fphilosophy.stackexchange.com%2fquestions%2f61580%2fhow-to-prove-pa-%25e2%2586%2592-%25e2%2588%2580xpx-%25e2%2588%25a8-%25c2%25acx-a-using-natural-deduction%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown