How to Prove P(a) → ∀x(P(x) ∨ ¬(x = a)) using Natural DeductionUsing natural deduction rules give a formal proofIntroductory Natural Deduction QuestionProve A ∨ D from A ∨ (B ∧ C) and (¬ B ∨ ¬ C) ∨ D ( LPL Q6.26) without using --> or material implicationGiven P ∨ ¬ P prove (P → Q) → ((¬ P → Q) → Q) by natural deductionHow to prove ¬(p→q) ⊢ p &¬qDoes anyone have a proof checker they prefer using for modal logic?How do you prove law of excluded middle using tertium non datur?How to prove : (( P → Q ) ∨ ( Q → R )) by natural deductionHow to prove ‘∃xP(x)’ from ‘¬∀x(P(x)→Q(x))’How would i go about using natural deduction to prove this argument is valid?

Modeling an IPv4 Address

Why Is Death Allowed In the Matrix?

In Japanese, what’s the difference between “Tonari ni” (となりに) and “Tsugi” (つぎ)? When would you use one over the other?

Font hinting is lost in Chrome-like browsers (for some languages )

How do I create uniquely male characters?

Can I make popcorn with any corn?

Is it tax fraud for an individual to declare non-taxable revenue as taxable income? (US tax laws)

How is the claim "I am in New York only if I am in America" the same as "If I am in New York, then I am in America?

What are the differences between the usage of 'it' and 'they'?

Can divisibility rules for digits be generalized to sum of digits

How could an uplifted falcon's brain work?

What's the point of deactivating Num Lock on login screens?

"to be prejudice towards/against someone" vs "to be prejudiced against/towards someone"

What would happen to a modern skyscraper if it rains micro blackholes?

Can a Warlock become Neutral Good?

Has the BBC provided arguments for saying Brexit being cancelled is unlikely?

Can an x86 CPU running in real mode be considered to be basically an 8086 CPU?

"You are your self first supporter", a more proper way to say it

Why do I get two different answers for this counting problem?

Why do falling prices hurt debtors?

Python: next in for loop

Test whether all array elements are factors of a number

can i play a electric guitar through a bass amp?

What typically incentivizes a professor to change jobs to a lower ranking university?



How to Prove P(a) → ∀x(P(x) ∨ ¬(x = a)) using Natural Deduction


Using natural deduction rules give a formal proofIntroductory Natural Deduction QuestionProve A ∨ D from A ∨ (B ∧ C) and (¬ B ∨ ¬ C) ∨ D ( LPL Q6.26) without using --> or material implicationGiven P ∨ ¬ P prove (P → Q) → ((¬ P → Q) → Q) by natural deductionHow to prove ¬(p→q) ⊢ p &¬qDoes anyone have a proof checker they prefer using for modal logic?How do you prove law of excluded middle using tertium non datur?How to prove : (( P → Q ) ∨ ( Q → R )) by natural deductionHow to prove ‘∃xP(x)’ from ‘¬∀x(P(x)→Q(x))’How would i go about using natural deduction to prove this argument is valid?













4















How would a formal Fitch proof look like.
I am given P(a) → ∀x(P(x) ∨ ¬(x = a)) to prove using Natural Deduction of predicate logic.
I am confused on how to proceed with the proof.
Please advice me on how to go about with this.



Thanks in advance










share|improve this question







New contributor




Moey mnm is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.
























    4















    How would a formal Fitch proof look like.
    I am given P(a) → ∀x(P(x) ∨ ¬(x = a)) to prove using Natural Deduction of predicate logic.
    I am confused on how to proceed with the proof.
    Please advice me on how to go about with this.



    Thanks in advance










    share|improve this question







    New contributor




    Moey mnm is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
    Check out our Code of Conduct.






















      4












      4








      4








      How would a formal Fitch proof look like.
      I am given P(a) → ∀x(P(x) ∨ ¬(x = a)) to prove using Natural Deduction of predicate logic.
      I am confused on how to proceed with the proof.
      Please advice me on how to go about with this.



      Thanks in advance










      share|improve this question







      New contributor




      Moey mnm is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.












      How would a formal Fitch proof look like.
      I am given P(a) → ∀x(P(x) ∨ ¬(x = a)) to prove using Natural Deduction of predicate logic.
      I am confused on how to proceed with the proof.
      Please advice me on how to go about with this.



      Thanks in advance







      logic proof fitch quantification






      share|improve this question







      New contributor




      Moey mnm is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.











      share|improve this question







      New contributor




      Moey mnm is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.









      share|improve this question




      share|improve this question






      New contributor




      Moey mnm is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.









      asked Apr 2 at 23:56









      Moey mnmMoey mnm

      263




      263




      New contributor




      Moey mnm is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.





      New contributor





      Moey mnm is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.






      Moey mnm is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.




















          1 Answer
          1






          active

          oldest

          votes


















          4














          HINT: I'll sketch the derivation. Since the theorem is a conditional, try using conditional proof/conditional-introduction by assuming P(a) and trying to derive ∀x(P(x) ∨ ¬(x = a)) from it. Here, to derive it, I would try an indirect proof by assuming the negation ¬∀x(P(x) ∨ ¬(x = a)) and trying to derive a contradiction. Use quantifier equivalence rules to get ∃x¬(P(x) ∨ ¬(x = a)).



          The next steps will be a little different depending on your list of rules (quantifier rules typically come with restrictions to ensure the rules are sound, and different texts will use different restrictions). Roughly, we can let y be the individual such that ¬(P(y) ∨ ¬(y = a)). Apply De Morgan's law to get ¬P(y) ∧ (y = a). Since y = a, it must be that ¬P(a), contradicting our assumption that P(a). Hence our contradiction completing the indirect proof of ∀x(P(x) ∨ ¬(x = a)).



          Hope this helps!






          share|improve this answer




















          • 1





            Just as confirmation, your suggestion for how to proceed worked using the following proof checker: proofs.openlogicproject.org

            – Frank Hubeny
            Apr 3 at 2:44











          Your Answer








          StackExchange.ready(function()
          var channelOptions =
          tags: "".split(" "),
          id: "265"
          ;
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function()
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled)
          StackExchange.using("snippets", function()
          createEditor();
          );

          else
          createEditor();

          );

          function createEditor()
          StackExchange.prepareEditor(
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: false,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: null,
          bindNavPrevention: true,
          postfix: "",
          imageUploader:
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          ,
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          );



          );






          Moey mnm is a new contributor. Be nice, and check out our Code of Conduct.









          draft saved

          draft discarded


















          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fphilosophy.stackexchange.com%2fquestions%2f61580%2fhow-to-prove-pa-%25e2%2586%2592-%25e2%2588%2580xpx-%25e2%2588%25a8-%25c2%25acx-a-using-natural-deduction%23new-answer', 'question_page');

          );

          Post as a guest















          Required, but never shown

























          1 Answer
          1






          active

          oldest

          votes








          1 Answer
          1






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          4














          HINT: I'll sketch the derivation. Since the theorem is a conditional, try using conditional proof/conditional-introduction by assuming P(a) and trying to derive ∀x(P(x) ∨ ¬(x = a)) from it. Here, to derive it, I would try an indirect proof by assuming the negation ¬∀x(P(x) ∨ ¬(x = a)) and trying to derive a contradiction. Use quantifier equivalence rules to get ∃x¬(P(x) ∨ ¬(x = a)).



          The next steps will be a little different depending on your list of rules (quantifier rules typically come with restrictions to ensure the rules are sound, and different texts will use different restrictions). Roughly, we can let y be the individual such that ¬(P(y) ∨ ¬(y = a)). Apply De Morgan's law to get ¬P(y) ∧ (y = a). Since y = a, it must be that ¬P(a), contradicting our assumption that P(a). Hence our contradiction completing the indirect proof of ∀x(P(x) ∨ ¬(x = a)).



          Hope this helps!






          share|improve this answer




















          • 1





            Just as confirmation, your suggestion for how to proceed worked using the following proof checker: proofs.openlogicproject.org

            – Frank Hubeny
            Apr 3 at 2:44















          4














          HINT: I'll sketch the derivation. Since the theorem is a conditional, try using conditional proof/conditional-introduction by assuming P(a) and trying to derive ∀x(P(x) ∨ ¬(x = a)) from it. Here, to derive it, I would try an indirect proof by assuming the negation ¬∀x(P(x) ∨ ¬(x = a)) and trying to derive a contradiction. Use quantifier equivalence rules to get ∃x¬(P(x) ∨ ¬(x = a)).



          The next steps will be a little different depending on your list of rules (quantifier rules typically come with restrictions to ensure the rules are sound, and different texts will use different restrictions). Roughly, we can let y be the individual such that ¬(P(y) ∨ ¬(y = a)). Apply De Morgan's law to get ¬P(y) ∧ (y = a). Since y = a, it must be that ¬P(a), contradicting our assumption that P(a). Hence our contradiction completing the indirect proof of ∀x(P(x) ∨ ¬(x = a)).



          Hope this helps!






          share|improve this answer




















          • 1





            Just as confirmation, your suggestion for how to proceed worked using the following proof checker: proofs.openlogicproject.org

            – Frank Hubeny
            Apr 3 at 2:44













          4












          4








          4







          HINT: I'll sketch the derivation. Since the theorem is a conditional, try using conditional proof/conditional-introduction by assuming P(a) and trying to derive ∀x(P(x) ∨ ¬(x = a)) from it. Here, to derive it, I would try an indirect proof by assuming the negation ¬∀x(P(x) ∨ ¬(x = a)) and trying to derive a contradiction. Use quantifier equivalence rules to get ∃x¬(P(x) ∨ ¬(x = a)).



          The next steps will be a little different depending on your list of rules (quantifier rules typically come with restrictions to ensure the rules are sound, and different texts will use different restrictions). Roughly, we can let y be the individual such that ¬(P(y) ∨ ¬(y = a)). Apply De Morgan's law to get ¬P(y) ∧ (y = a). Since y = a, it must be that ¬P(a), contradicting our assumption that P(a). Hence our contradiction completing the indirect proof of ∀x(P(x) ∨ ¬(x = a)).



          Hope this helps!






          share|improve this answer















          HINT: I'll sketch the derivation. Since the theorem is a conditional, try using conditional proof/conditional-introduction by assuming P(a) and trying to derive ∀x(P(x) ∨ ¬(x = a)) from it. Here, to derive it, I would try an indirect proof by assuming the negation ¬∀x(P(x) ∨ ¬(x = a)) and trying to derive a contradiction. Use quantifier equivalence rules to get ∃x¬(P(x) ∨ ¬(x = a)).



          The next steps will be a little different depending on your list of rules (quantifier rules typically come with restrictions to ensure the rules are sound, and different texts will use different restrictions). Roughly, we can let y be the individual such that ¬(P(y) ∨ ¬(y = a)). Apply De Morgan's law to get ¬P(y) ∧ (y = a). Since y = a, it must be that ¬P(a), contradicting our assumption that P(a). Hence our contradiction completing the indirect proof of ∀x(P(x) ∨ ¬(x = a)).



          Hope this helps!







          share|improve this answer














          share|improve this answer



          share|improve this answer








          edited Apr 3 at 18:36

























          answered Apr 3 at 1:12









          AdamAdam

          5008




          5008







          • 1





            Just as confirmation, your suggestion for how to proceed worked using the following proof checker: proofs.openlogicproject.org

            – Frank Hubeny
            Apr 3 at 2:44












          • 1





            Just as confirmation, your suggestion for how to proceed worked using the following proof checker: proofs.openlogicproject.org

            – Frank Hubeny
            Apr 3 at 2:44







          1




          1





          Just as confirmation, your suggestion for how to proceed worked using the following proof checker: proofs.openlogicproject.org

          – Frank Hubeny
          Apr 3 at 2:44





          Just as confirmation, your suggestion for how to proceed worked using the following proof checker: proofs.openlogicproject.org

          – Frank Hubeny
          Apr 3 at 2:44










          Moey mnm is a new contributor. Be nice, and check out our Code of Conduct.









          draft saved

          draft discarded


















          Moey mnm is a new contributor. Be nice, and check out our Code of Conduct.












          Moey mnm is a new contributor. Be nice, and check out our Code of Conduct.











          Moey mnm is a new contributor. Be nice, and check out our Code of Conduct.














          Thanks for contributing an answer to Philosophy Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid


          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.

          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fphilosophy.stackexchange.com%2fquestions%2f61580%2fhow-to-prove-pa-%25e2%2586%2592-%25e2%2588%2580xpx-%25e2%2588%25a8-%25c2%25acx-a-using-natural-deduction%23new-answer', 'question_page');

          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          រឿង រ៉ូមេអូ និង ហ្ស៊ុយលីយេ សង្ខេបរឿង តួអង្គ បញ្ជីណែនាំ

          Crop image to path created in TikZ? Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern)Crop an inserted image?TikZ pictures does not appear in posterImage behind and beyond crop marks?Tikz picture as large as possible on A4 PageTransparency vs image compression dilemmaHow to crop background from image automatically?Image does not cropTikzexternal capturing crop marks when externalizing pgfplots?How to include image path that contains a dollar signCrop image with left size given

          Romeo and Juliet ContentsCharactersSynopsisSourcesDate and textThemes and motifsCriticism and interpretationLegacyScene by sceneSee alsoNotes and referencesSourcesExternal linksNavigation menu"Consumer Price Index (estimate) 1800–"10.2307/28710160037-3222287101610.1093/res/II.5.31910.2307/45967845967810.2307/2869925286992510.1525/jams.1982.35.3.03a00050"Dada Masilo: South African dancer who breaks the rules"10.1093/res/os-XV.57.1610.2307/28680942868094"Sweet Sorrow: Mann-Korman's Romeo and Juliet Closes Sept. 5 at MN's Ordway"the original10.2307/45957745957710.1017/CCOL0521570476.009"Ram Leela box office collections hit massive Rs 100 crore, pulverises prediction"Archived"Broadway Revival of Romeo and Juliet, Starring Orlando Bloom and Condola Rashad, Will Close Dec. 8"Archived10.1075/jhp.7.1.04hon"Wherefore art thou, Romeo? To make us laugh at Navy Pier"the original10.1093/gmo/9781561592630.article.O006772"Ram-leela Review Roundup: Critics Hail Film as Best Adaptation of Romeo and Juliet"Archived10.2307/31946310047-77293194631"Romeo and Juliet get Twitter treatment""Juliet's Nurse by Lois Leveen""Romeo and Juliet: Orlando Bloom's Broadway Debut Released in Theaters for Valentine's Day"Archived"Romeo and Juliet Has No Balcony"10.1093/gmo/9781561592630.article.O00778110.2307/2867423286742310.1076/enst.82.2.115.959510.1080/00138380601042675"A plague o' both your houses: error in GCSE exam paper forces apology""Juliet of the Five O'Clock Shadow, and Other Wonders"10.2307/33912430027-4321339124310.2307/28487440038-7134284874410.2307/29123140149-661129123144728341M"Weekender Guide: Shakespeare on The Drive""balcony"UK public library membership"romeo"UK public library membership10.1017/CCOL9780521844291"Post-Zionist Critique on Israel and the Palestinians Part III: Popular Culture"10.2307/25379071533-86140377-919X2537907"Capulets and Montagues: UK exam board admit mixing names up in Romeo and Juliet paper"Istoria Novellamente Ritrovata di Due Nobili Amanti2027/mdp.390150822329610820-750X"GCSE exam error: Board accidentally rewrites Shakespeare"10.2307/29176390149-66112917639"Exam board apologises after error in English GCSE paper which confused characters in Shakespeare's Romeo and Juliet""From Mariotto and Ganozza to Romeo and Guilietta: Metamorphoses of a Renaissance Tale"10.2307/37323537323510.2307/2867455286745510.2307/28678912867891"10 Questions for Taylor Swift"10.2307/28680922868092"Haymarket Theatre""The Zeffirelli Way: Revealing Talk by Florentine Director""Michael Smuin: 1938-2007 / Prolific dance director had showy career"The Life and Art of Edwin BoothRomeo and JulietRomeo and JulietRomeo and JulietRomeo and JulietEasy Read Romeo and JulietRomeo and Julieteeecb12003684p(data)4099369-3n8211610759dbe00d-a9e2-41a3-b2c1-977dd692899302814385X313670221313670221