How to enclose theorems and definition in rectangles?Vertical space around theoremsTheorems and Definitions as quotesHow to replace all pictures by white rectangles?How to remove line breaks before and after theorems?Horizontal spaces to the left and right of theoremsExtra spacing around restatable theoremsKOMA script and amsthm: Space lost before and after theoremsShrinking spacing around definition environmentTheorems and parskipremove spacing from a definition
How to format long polynomial?
To string or not to string
tikz: show 0 at the axis origin
How is it possible to have an ability score that is less than 3?
Fencing style for blades that can attack from a distance
Smoothness of finite-dimensional functional calculus
Why doesn't Newton's third law mean a person bounces back to where they started when they hit the ground?
can i play a electric guitar through a bass amp?
Test whether all array elements are factors of a number
Is this a crack on the carbon frame?
What do the dots in this tr command do: tr .............A-Z A-ZA-Z <<< "JVPQBOV" (with 13 dots)
Adding span tags within wp_list_pages list items
The use of multiple foreign keys on same column in SQL Server
Is it legal for company to use my work email to pretend I still work there?
Can an x86 CPU running in real mode be considered to be basically an 8086 CPU?
How did the USSR manage to innovate in an environment characterized by government censorship and high bureaucracy?
How to write a macro that is braces sensitive?
A newer friend of my brother's gave him a load of baseball cards that are supposedly extremely valuable. Is this a scam?
Can I ask the recruiters in my resume to put the reason why I am rejected?
Why was the small council so happy for Tyrion to become the Master of Coin?
Windows 98 hangs after entering password on fresh install
An academic/student plagiarism
Problem of parity - Can we draw a closed path made up of 20 line segments...
Is it tax fraud for an individual to declare non-taxable revenue as taxable income? (US tax laws)
How to enclose theorems and definition in rectangles?
Vertical space around theoremsTheorems and Definitions as quotesHow to replace all pictures by white rectangles?How to remove line breaks before and after theorems?Horizontal spaces to the left and right of theoremsExtra spacing around restatable theoremsKOMA script and amsthm: Space lost before and after theoremsShrinking spacing around definition environmentTheorems and parskipremove spacing from a definition
The following code
documentclassarticle
usepackageamsthm
usepackageamsmath
usepackagemathtools
usepackage[left=1.5in, right=1.5in, top=0.5in]geometry
newtheoremdefinitionDefinition
newtheoremtheoremTheorem
begindocument
titleExtra Credit
maketitle
begindefinition
If f is analytic at $z_0$, then the series
beginequation
f(z_0) + f'(z_0)(z-z_0) + fracf''(z_0)2!(z-z_0)^2 + cdots = sum_n=0^infty fracf^(n)(z_0)n!(z-z_0)^n
endequation
is called the Taylor series for f around $z_0$.
enddefinition
begintheorem
If f is analytic inside and on the simple closed positively oriented contour $Gamma$ and if $z_0$ is any point inside $Gamma$, then
beginequation
f^(n)(z_0) = fracn!2pi i int_Gamma fracf(zeta)(zeta - z_0)^n+1dzeta hspace1cm (n=1,2,3, cdots )
endequation
endtheorem
begintheorem
(Cauchy's Integral Formula) Let $Gamma$ be a simple closed positively oriented contour. If $f$ is analytic in some simply connected domain $D$ containing $Gamma$ and $z_0$ is any point inside $Gamma$, then
beginequation
f(z_0)= frac12pi i int_Gamma fracf(z)z-z_0 dz
endequation
endtheorem
noindent hrulefill
begintheorem
If f is analytic in the disk $|z-z_0|<R'$, then the Taylor series $(1)$ converges to $f(z)$ for all $z$ in this disk.
endtheorem
produces the following image
How can I enclose Definition 1, Theorem 1, and Theorem 2 in separate rectangles. And have these rectangles separated by a space?
spacing
New contributor
add a comment |
The following code
documentclassarticle
usepackageamsthm
usepackageamsmath
usepackagemathtools
usepackage[left=1.5in, right=1.5in, top=0.5in]geometry
newtheoremdefinitionDefinition
newtheoremtheoremTheorem
begindocument
titleExtra Credit
maketitle
begindefinition
If f is analytic at $z_0$, then the series
beginequation
f(z_0) + f'(z_0)(z-z_0) + fracf''(z_0)2!(z-z_0)^2 + cdots = sum_n=0^infty fracf^(n)(z_0)n!(z-z_0)^n
endequation
is called the Taylor series for f around $z_0$.
enddefinition
begintheorem
If f is analytic inside and on the simple closed positively oriented contour $Gamma$ and if $z_0$ is any point inside $Gamma$, then
beginequation
f^(n)(z_0) = fracn!2pi i int_Gamma fracf(zeta)(zeta - z_0)^n+1dzeta hspace1cm (n=1,2,3, cdots )
endequation
endtheorem
begintheorem
(Cauchy's Integral Formula) Let $Gamma$ be a simple closed positively oriented contour. If $f$ is analytic in some simply connected domain $D$ containing $Gamma$ and $z_0$ is any point inside $Gamma$, then
beginequation
f(z_0)= frac12pi i int_Gamma fracf(z)z-z_0 dz
endequation
endtheorem
noindent hrulefill
begintheorem
If f is analytic in the disk $|z-z_0|<R'$, then the Taylor series $(1)$ converges to $f(z)$ for all $z$ in this disk.
endtheorem
produces the following image
How can I enclose Definition 1, Theorem 1, and Theorem 2 in separate rectangles. And have these rectangles separated by a space?
spacing
New contributor
Do you want all theorems/definition to be enclosed in a frame, or only some?
– Bernard
Apr 2 at 21:55
I would like all theorems/definitions to be enclosed in a frame except for Theorem 3
– K.M
Apr 2 at 21:57
In this case you should take a look at thenewframedtheorem
command inntheorem
.
– Bernard
Apr 2 at 22:06
add a comment |
The following code
documentclassarticle
usepackageamsthm
usepackageamsmath
usepackagemathtools
usepackage[left=1.5in, right=1.5in, top=0.5in]geometry
newtheoremdefinitionDefinition
newtheoremtheoremTheorem
begindocument
titleExtra Credit
maketitle
begindefinition
If f is analytic at $z_0$, then the series
beginequation
f(z_0) + f'(z_0)(z-z_0) + fracf''(z_0)2!(z-z_0)^2 + cdots = sum_n=0^infty fracf^(n)(z_0)n!(z-z_0)^n
endequation
is called the Taylor series for f around $z_0$.
enddefinition
begintheorem
If f is analytic inside and on the simple closed positively oriented contour $Gamma$ and if $z_0$ is any point inside $Gamma$, then
beginequation
f^(n)(z_0) = fracn!2pi i int_Gamma fracf(zeta)(zeta - z_0)^n+1dzeta hspace1cm (n=1,2,3, cdots )
endequation
endtheorem
begintheorem
(Cauchy's Integral Formula) Let $Gamma$ be a simple closed positively oriented contour. If $f$ is analytic in some simply connected domain $D$ containing $Gamma$ and $z_0$ is any point inside $Gamma$, then
beginequation
f(z_0)= frac12pi i int_Gamma fracf(z)z-z_0 dz
endequation
endtheorem
noindent hrulefill
begintheorem
If f is analytic in the disk $|z-z_0|<R'$, then the Taylor series $(1)$ converges to $f(z)$ for all $z$ in this disk.
endtheorem
produces the following image
How can I enclose Definition 1, Theorem 1, and Theorem 2 in separate rectangles. And have these rectangles separated by a space?
spacing
New contributor
The following code
documentclassarticle
usepackageamsthm
usepackageamsmath
usepackagemathtools
usepackage[left=1.5in, right=1.5in, top=0.5in]geometry
newtheoremdefinitionDefinition
newtheoremtheoremTheorem
begindocument
titleExtra Credit
maketitle
begindefinition
If f is analytic at $z_0$, then the series
beginequation
f(z_0) + f'(z_0)(z-z_0) + fracf''(z_0)2!(z-z_0)^2 + cdots = sum_n=0^infty fracf^(n)(z_0)n!(z-z_0)^n
endequation
is called the Taylor series for f around $z_0$.
enddefinition
begintheorem
If f is analytic inside and on the simple closed positively oriented contour $Gamma$ and if $z_0$ is any point inside $Gamma$, then
beginequation
f^(n)(z_0) = fracn!2pi i int_Gamma fracf(zeta)(zeta - z_0)^n+1dzeta hspace1cm (n=1,2,3, cdots )
endequation
endtheorem
begintheorem
(Cauchy's Integral Formula) Let $Gamma$ be a simple closed positively oriented contour. If $f$ is analytic in some simply connected domain $D$ containing $Gamma$ and $z_0$ is any point inside $Gamma$, then
beginequation
f(z_0)= frac12pi i int_Gamma fracf(z)z-z_0 dz
endequation
endtheorem
noindent hrulefill
begintheorem
If f is analytic in the disk $|z-z_0|<R'$, then the Taylor series $(1)$ converges to $f(z)$ for all $z$ in this disk.
endtheorem
produces the following image
How can I enclose Definition 1, Theorem 1, and Theorem 2 in separate rectangles. And have these rectangles separated by a space?
spacing
spacing
New contributor
New contributor
New contributor
asked Apr 2 at 21:38
K.MK.M
1675
1675
New contributor
New contributor
Do you want all theorems/definition to be enclosed in a frame, or only some?
– Bernard
Apr 2 at 21:55
I would like all theorems/definitions to be enclosed in a frame except for Theorem 3
– K.M
Apr 2 at 21:57
In this case you should take a look at thenewframedtheorem
command inntheorem
.
– Bernard
Apr 2 at 22:06
add a comment |
Do you want all theorems/definition to be enclosed in a frame, or only some?
– Bernard
Apr 2 at 21:55
I would like all theorems/definitions to be enclosed in a frame except for Theorem 3
– K.M
Apr 2 at 21:57
In this case you should take a look at thenewframedtheorem
command inntheorem
.
– Bernard
Apr 2 at 22:06
Do you want all theorems/definition to be enclosed in a frame, or only some?
– Bernard
Apr 2 at 21:55
Do you want all theorems/definition to be enclosed in a frame, or only some?
– Bernard
Apr 2 at 21:55
I would like all theorems/definitions to be enclosed in a frame except for Theorem 3
– K.M
Apr 2 at 21:57
I would like all theorems/definitions to be enclosed in a frame except for Theorem 3
– K.M
Apr 2 at 21:57
In this case you should take a look at the
newframedtheorem
command in ntheorem
.– Bernard
Apr 2 at 22:06
In this case you should take a look at the
newframedtheorem
command in ntheorem
.– Bernard
Apr 2 at 22:06
add a comment |
2 Answers
2
active
oldest
votes
You can try with shadethm
package, it can do all you want and many more. In you example what you need is:
documentclassarticle
usepackageshadethm
usepackagemathtools
newshadetheoremboxdefDefinition[section]
newshadetheoremboxtheorem[boxdef]Theorem
newtheoremtheorem[boxdef]Theorem
setlengthshadeboxsep2pt
setlengthshadeboxrule.4pt
setlengthshadedtextwidthtextwidth
addtolengthshadedtextwidth-2shadeboxsep
addtolengthshadedtextwidth-2shadeboxrule
setlengthshadeleftshift0pt
setlengthshaderightshift0pt
definecolorshadethmcolorcmyk0,0,0,0
definecolorshaderulecolorcmyk0,0,0,1
begindocument
sectionBoxed theorems
beginboxdef
If f is analytic at $z_0$, then the series
beginequation
f(z_0) + f'(z_0)(z-z_0) + fracf''(z_0)2!(z-z_0)^2 + cdots = sum_n=0^infty fracf^(n)(z_0)n!(z-z_0)^n
endequation
is called the Taylor series for f around $z_0$.
endboxdef
beginboxtheorem
If f is analytic inside and on the simple closed positively oriented contour $Gamma$ and if $z_0$ is any point inside $Gamma$, then
beginequation
f^(n)(z_0) = fracn!2pi i int_Gamma fracf(zeta)(zeta - z_0)^n+1dzeta hspace1cm (n=1,2,3, cdots )
endequation
endboxtheorem
beginboxtheorem
(Cauchy's Integral Formula) Let $Gamma$ be a simple closed positively oriented contour. If $f$ is analytic in some simply connected domain $D$ containing $Gamma$ and $z_0$ is any point inside $Gamma$, then
beginequation
f(z_0)= frac12pi i int_Gamma fracf(z)z-z_0 dz
endequation
endboxtheorem
noindent hrulefill
begintheorem
If f is analytic in the disk $|z-z_0|<R'$, then the Taylor series $(1)$ converges to $f(z)$ for all $z$ in this disk.
endtheorem
enddocument
which produces the following:
FornewshadetheoremboxdefDefinition[section] newshadetheoremboxtheorem[boxdef]Theorem newtheoremtheorem[boxdef]Theorem
, why isboxdef
in brackets?
– K.M
Apr 2 at 22:37
1
In the first box, the space above the equation is larger than that below the equation The reason for this is the blank line abovebeginequation
. Blank lines in that position should be avoided.
– barbara beeton
Apr 3 at 21:06
1
@K.M the brackets [boxdef] is to enumerate all different kind of theorems with the same enumeration
– Luis Turcio
Apr 3 at 21:50
@barbarabeeton the spacing is due to the original code written by K.M, it has a blank line before beginequation and one after endequation. Removing or commenting this blank lines should be enough to correct spacing.
– Luis Turcio
Apr 3 at 21:54
@LuisTurcio -- Indeed, commenting or removing the blank line is what is recommended. I really should have posted this comment to the original question.
– barbara beeton
Apr 4 at 0:12
|
show 1 more comment
Here is a solution with thmtools
, which cooperates wit amsthm
. Unrelated: you don't have to load amsmath
if you load mathtools
, as the latter does it for you:
documentclassarticle
usepackageamsthm, thmtools
usepackagemathtools
usepackage[left=1.5in, right=1.5in, top=0.5in]geometry
newtheoremdefinitionDefinition
newtheoremtheoremTheorem
declaretheorem[sibling=definition, shaded=rulecolor=black, rulewidth=0.6pt, bgcolor=rgb1,1,1,name=Definition]boxeddef
declaretheorem[sibling=theorem, shaded=rulecolor=black, rulewidth=0.6pt, bgcolor=rgb1,1,1,name=Theorem]boxedthm
begindocument
titleExtra Credit
author
maketitle
beginboxeddef
If f is analytic at $z_0$, then the series
beginequation
f(z_0) + f'(z_0)(z-z_0) + fracf''(z_0)2!(z-z_0)^2 + cdots = sum_n=0^infty fracf^(n)(z_0)n!(z-z_0)^n
endequation
is called the Taylor series for f around $z_0$.
endboxeddef
beginboxedthm
If f is analytic inside and on the simple closed positively oriented contour $Gamma$ and if $z_0$ is any point inside $Gamma$, then
beginequation
f^(n)(z_0) = fracn!2pi i int_Gamma fracf(zeta)(zeta - z_0)^n+1dzeta hspace1cm (n=1,2,3, cdots )
endequation
endboxedthm
beginboxedthm
(Cauchy's Integral Formula) Let $Gamma$ be a simple closed positively oriented contour. If $f$ is analytic in some simply connected domain $D$ containing $Gamma$ and $z_0$ is any point inside $Gamma$, then
beginequation
f(z_0)= frac12pi i int_Gamma fracf(z)z-z_0 dz
endequation
endboxedthm
noindent hrulefill
begintheorem
If f is analytic in the disk $|z-z_0|<R'$, then the Taylor series $(1)$ converges to $f(z)$ for all $z$ in this disk.
endtheorem
enddocument
add a comment |
Your Answer
StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "85"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);
else
createEditor();
);
function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: false,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: null,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);
);
K.M is a new contributor. Be nice, and check out our Code of Conduct.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2ftex.stackexchange.com%2fquestions%2f482860%2fhow-to-enclose-theorems-and-definition-in-rectangles%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
You can try with shadethm
package, it can do all you want and many more. In you example what you need is:
documentclassarticle
usepackageshadethm
usepackagemathtools
newshadetheoremboxdefDefinition[section]
newshadetheoremboxtheorem[boxdef]Theorem
newtheoremtheorem[boxdef]Theorem
setlengthshadeboxsep2pt
setlengthshadeboxrule.4pt
setlengthshadedtextwidthtextwidth
addtolengthshadedtextwidth-2shadeboxsep
addtolengthshadedtextwidth-2shadeboxrule
setlengthshadeleftshift0pt
setlengthshaderightshift0pt
definecolorshadethmcolorcmyk0,0,0,0
definecolorshaderulecolorcmyk0,0,0,1
begindocument
sectionBoxed theorems
beginboxdef
If f is analytic at $z_0$, then the series
beginequation
f(z_0) + f'(z_0)(z-z_0) + fracf''(z_0)2!(z-z_0)^2 + cdots = sum_n=0^infty fracf^(n)(z_0)n!(z-z_0)^n
endequation
is called the Taylor series for f around $z_0$.
endboxdef
beginboxtheorem
If f is analytic inside and on the simple closed positively oriented contour $Gamma$ and if $z_0$ is any point inside $Gamma$, then
beginequation
f^(n)(z_0) = fracn!2pi i int_Gamma fracf(zeta)(zeta - z_0)^n+1dzeta hspace1cm (n=1,2,3, cdots )
endequation
endboxtheorem
beginboxtheorem
(Cauchy's Integral Formula) Let $Gamma$ be a simple closed positively oriented contour. If $f$ is analytic in some simply connected domain $D$ containing $Gamma$ and $z_0$ is any point inside $Gamma$, then
beginequation
f(z_0)= frac12pi i int_Gamma fracf(z)z-z_0 dz
endequation
endboxtheorem
noindent hrulefill
begintheorem
If f is analytic in the disk $|z-z_0|<R'$, then the Taylor series $(1)$ converges to $f(z)$ for all $z$ in this disk.
endtheorem
enddocument
which produces the following:
FornewshadetheoremboxdefDefinition[section] newshadetheoremboxtheorem[boxdef]Theorem newtheoremtheorem[boxdef]Theorem
, why isboxdef
in brackets?
– K.M
Apr 2 at 22:37
1
In the first box, the space above the equation is larger than that below the equation The reason for this is the blank line abovebeginequation
. Blank lines in that position should be avoided.
– barbara beeton
Apr 3 at 21:06
1
@K.M the brackets [boxdef] is to enumerate all different kind of theorems with the same enumeration
– Luis Turcio
Apr 3 at 21:50
@barbarabeeton the spacing is due to the original code written by K.M, it has a blank line before beginequation and one after endequation. Removing or commenting this blank lines should be enough to correct spacing.
– Luis Turcio
Apr 3 at 21:54
@LuisTurcio -- Indeed, commenting or removing the blank line is what is recommended. I really should have posted this comment to the original question.
– barbara beeton
Apr 4 at 0:12
|
show 1 more comment
You can try with shadethm
package, it can do all you want and many more. In you example what you need is:
documentclassarticle
usepackageshadethm
usepackagemathtools
newshadetheoremboxdefDefinition[section]
newshadetheoremboxtheorem[boxdef]Theorem
newtheoremtheorem[boxdef]Theorem
setlengthshadeboxsep2pt
setlengthshadeboxrule.4pt
setlengthshadedtextwidthtextwidth
addtolengthshadedtextwidth-2shadeboxsep
addtolengthshadedtextwidth-2shadeboxrule
setlengthshadeleftshift0pt
setlengthshaderightshift0pt
definecolorshadethmcolorcmyk0,0,0,0
definecolorshaderulecolorcmyk0,0,0,1
begindocument
sectionBoxed theorems
beginboxdef
If f is analytic at $z_0$, then the series
beginequation
f(z_0) + f'(z_0)(z-z_0) + fracf''(z_0)2!(z-z_0)^2 + cdots = sum_n=0^infty fracf^(n)(z_0)n!(z-z_0)^n
endequation
is called the Taylor series for f around $z_0$.
endboxdef
beginboxtheorem
If f is analytic inside and on the simple closed positively oriented contour $Gamma$ and if $z_0$ is any point inside $Gamma$, then
beginequation
f^(n)(z_0) = fracn!2pi i int_Gamma fracf(zeta)(zeta - z_0)^n+1dzeta hspace1cm (n=1,2,3, cdots )
endequation
endboxtheorem
beginboxtheorem
(Cauchy's Integral Formula) Let $Gamma$ be a simple closed positively oriented contour. If $f$ is analytic in some simply connected domain $D$ containing $Gamma$ and $z_0$ is any point inside $Gamma$, then
beginequation
f(z_0)= frac12pi i int_Gamma fracf(z)z-z_0 dz
endequation
endboxtheorem
noindent hrulefill
begintheorem
If f is analytic in the disk $|z-z_0|<R'$, then the Taylor series $(1)$ converges to $f(z)$ for all $z$ in this disk.
endtheorem
enddocument
which produces the following:
FornewshadetheoremboxdefDefinition[section] newshadetheoremboxtheorem[boxdef]Theorem newtheoremtheorem[boxdef]Theorem
, why isboxdef
in brackets?
– K.M
Apr 2 at 22:37
1
In the first box, the space above the equation is larger than that below the equation The reason for this is the blank line abovebeginequation
. Blank lines in that position should be avoided.
– barbara beeton
Apr 3 at 21:06
1
@K.M the brackets [boxdef] is to enumerate all different kind of theorems with the same enumeration
– Luis Turcio
Apr 3 at 21:50
@barbarabeeton the spacing is due to the original code written by K.M, it has a blank line before beginequation and one after endequation. Removing or commenting this blank lines should be enough to correct spacing.
– Luis Turcio
Apr 3 at 21:54
@LuisTurcio -- Indeed, commenting or removing the blank line is what is recommended. I really should have posted this comment to the original question.
– barbara beeton
Apr 4 at 0:12
|
show 1 more comment
You can try with shadethm
package, it can do all you want and many more. In you example what you need is:
documentclassarticle
usepackageshadethm
usepackagemathtools
newshadetheoremboxdefDefinition[section]
newshadetheoremboxtheorem[boxdef]Theorem
newtheoremtheorem[boxdef]Theorem
setlengthshadeboxsep2pt
setlengthshadeboxrule.4pt
setlengthshadedtextwidthtextwidth
addtolengthshadedtextwidth-2shadeboxsep
addtolengthshadedtextwidth-2shadeboxrule
setlengthshadeleftshift0pt
setlengthshaderightshift0pt
definecolorshadethmcolorcmyk0,0,0,0
definecolorshaderulecolorcmyk0,0,0,1
begindocument
sectionBoxed theorems
beginboxdef
If f is analytic at $z_0$, then the series
beginequation
f(z_0) + f'(z_0)(z-z_0) + fracf''(z_0)2!(z-z_0)^2 + cdots = sum_n=0^infty fracf^(n)(z_0)n!(z-z_0)^n
endequation
is called the Taylor series for f around $z_0$.
endboxdef
beginboxtheorem
If f is analytic inside and on the simple closed positively oriented contour $Gamma$ and if $z_0$ is any point inside $Gamma$, then
beginequation
f^(n)(z_0) = fracn!2pi i int_Gamma fracf(zeta)(zeta - z_0)^n+1dzeta hspace1cm (n=1,2,3, cdots )
endequation
endboxtheorem
beginboxtheorem
(Cauchy's Integral Formula) Let $Gamma$ be a simple closed positively oriented contour. If $f$ is analytic in some simply connected domain $D$ containing $Gamma$ and $z_0$ is any point inside $Gamma$, then
beginequation
f(z_0)= frac12pi i int_Gamma fracf(z)z-z_0 dz
endequation
endboxtheorem
noindent hrulefill
begintheorem
If f is analytic in the disk $|z-z_0|<R'$, then the Taylor series $(1)$ converges to $f(z)$ for all $z$ in this disk.
endtheorem
enddocument
which produces the following:
You can try with shadethm
package, it can do all you want and many more. In you example what you need is:
documentclassarticle
usepackageshadethm
usepackagemathtools
newshadetheoremboxdefDefinition[section]
newshadetheoremboxtheorem[boxdef]Theorem
newtheoremtheorem[boxdef]Theorem
setlengthshadeboxsep2pt
setlengthshadeboxrule.4pt
setlengthshadedtextwidthtextwidth
addtolengthshadedtextwidth-2shadeboxsep
addtolengthshadedtextwidth-2shadeboxrule
setlengthshadeleftshift0pt
setlengthshaderightshift0pt
definecolorshadethmcolorcmyk0,0,0,0
definecolorshaderulecolorcmyk0,0,0,1
begindocument
sectionBoxed theorems
beginboxdef
If f is analytic at $z_0$, then the series
beginequation
f(z_0) + f'(z_0)(z-z_0) + fracf''(z_0)2!(z-z_0)^2 + cdots = sum_n=0^infty fracf^(n)(z_0)n!(z-z_0)^n
endequation
is called the Taylor series for f around $z_0$.
endboxdef
beginboxtheorem
If f is analytic inside and on the simple closed positively oriented contour $Gamma$ and if $z_0$ is any point inside $Gamma$, then
beginequation
f^(n)(z_0) = fracn!2pi i int_Gamma fracf(zeta)(zeta - z_0)^n+1dzeta hspace1cm (n=1,2,3, cdots )
endequation
endboxtheorem
beginboxtheorem
(Cauchy's Integral Formula) Let $Gamma$ be a simple closed positively oriented contour. If $f$ is analytic in some simply connected domain $D$ containing $Gamma$ and $z_0$ is any point inside $Gamma$, then
beginequation
f(z_0)= frac12pi i int_Gamma fracf(z)z-z_0 dz
endequation
endboxtheorem
noindent hrulefill
begintheorem
If f is analytic in the disk $|z-z_0|<R'$, then the Taylor series $(1)$ converges to $f(z)$ for all $z$ in this disk.
endtheorem
enddocument
which produces the following:
answered Apr 2 at 22:27
Luis TurcioLuis Turcio
1259
1259
FornewshadetheoremboxdefDefinition[section] newshadetheoremboxtheorem[boxdef]Theorem newtheoremtheorem[boxdef]Theorem
, why isboxdef
in brackets?
– K.M
Apr 2 at 22:37
1
In the first box, the space above the equation is larger than that below the equation The reason for this is the blank line abovebeginequation
. Blank lines in that position should be avoided.
– barbara beeton
Apr 3 at 21:06
1
@K.M the brackets [boxdef] is to enumerate all different kind of theorems with the same enumeration
– Luis Turcio
Apr 3 at 21:50
@barbarabeeton the spacing is due to the original code written by K.M, it has a blank line before beginequation and one after endequation. Removing or commenting this blank lines should be enough to correct spacing.
– Luis Turcio
Apr 3 at 21:54
@LuisTurcio -- Indeed, commenting or removing the blank line is what is recommended. I really should have posted this comment to the original question.
– barbara beeton
Apr 4 at 0:12
|
show 1 more comment
FornewshadetheoremboxdefDefinition[section] newshadetheoremboxtheorem[boxdef]Theorem newtheoremtheorem[boxdef]Theorem
, why isboxdef
in brackets?
– K.M
Apr 2 at 22:37
1
In the first box, the space above the equation is larger than that below the equation The reason for this is the blank line abovebeginequation
. Blank lines in that position should be avoided.
– barbara beeton
Apr 3 at 21:06
1
@K.M the brackets [boxdef] is to enumerate all different kind of theorems with the same enumeration
– Luis Turcio
Apr 3 at 21:50
@barbarabeeton the spacing is due to the original code written by K.M, it has a blank line before beginequation and one after endequation. Removing or commenting this blank lines should be enough to correct spacing.
– Luis Turcio
Apr 3 at 21:54
@LuisTurcio -- Indeed, commenting or removing the blank line is what is recommended. I really should have posted this comment to the original question.
– barbara beeton
Apr 4 at 0:12
For
newshadetheoremboxdefDefinition[section] newshadetheoremboxtheorem[boxdef]Theorem newtheoremtheorem[boxdef]Theorem
, why is boxdef
in brackets?– K.M
Apr 2 at 22:37
For
newshadetheoremboxdefDefinition[section] newshadetheoremboxtheorem[boxdef]Theorem newtheoremtheorem[boxdef]Theorem
, why is boxdef
in brackets?– K.M
Apr 2 at 22:37
1
1
In the first box, the space above the equation is larger than that below the equation The reason for this is the blank line above
beginequation
. Blank lines in that position should be avoided.– barbara beeton
Apr 3 at 21:06
In the first box, the space above the equation is larger than that below the equation The reason for this is the blank line above
beginequation
. Blank lines in that position should be avoided.– barbara beeton
Apr 3 at 21:06
1
1
@K.M the brackets [boxdef] is to enumerate all different kind of theorems with the same enumeration
– Luis Turcio
Apr 3 at 21:50
@K.M the brackets [boxdef] is to enumerate all different kind of theorems with the same enumeration
– Luis Turcio
Apr 3 at 21:50
@barbarabeeton the spacing is due to the original code written by K.M, it has a blank line before beginequation and one after endequation. Removing or commenting this blank lines should be enough to correct spacing.
– Luis Turcio
Apr 3 at 21:54
@barbarabeeton the spacing is due to the original code written by K.M, it has a blank line before beginequation and one after endequation. Removing or commenting this blank lines should be enough to correct spacing.
– Luis Turcio
Apr 3 at 21:54
@LuisTurcio -- Indeed, commenting or removing the blank line is what is recommended. I really should have posted this comment to the original question.
– barbara beeton
Apr 4 at 0:12
@LuisTurcio -- Indeed, commenting or removing the blank line is what is recommended. I really should have posted this comment to the original question.
– barbara beeton
Apr 4 at 0:12
|
show 1 more comment
Here is a solution with thmtools
, which cooperates wit amsthm
. Unrelated: you don't have to load amsmath
if you load mathtools
, as the latter does it for you:
documentclassarticle
usepackageamsthm, thmtools
usepackagemathtools
usepackage[left=1.5in, right=1.5in, top=0.5in]geometry
newtheoremdefinitionDefinition
newtheoremtheoremTheorem
declaretheorem[sibling=definition, shaded=rulecolor=black, rulewidth=0.6pt, bgcolor=rgb1,1,1,name=Definition]boxeddef
declaretheorem[sibling=theorem, shaded=rulecolor=black, rulewidth=0.6pt, bgcolor=rgb1,1,1,name=Theorem]boxedthm
begindocument
titleExtra Credit
author
maketitle
beginboxeddef
If f is analytic at $z_0$, then the series
beginequation
f(z_0) + f'(z_0)(z-z_0) + fracf''(z_0)2!(z-z_0)^2 + cdots = sum_n=0^infty fracf^(n)(z_0)n!(z-z_0)^n
endequation
is called the Taylor series for f around $z_0$.
endboxeddef
beginboxedthm
If f is analytic inside and on the simple closed positively oriented contour $Gamma$ and if $z_0$ is any point inside $Gamma$, then
beginequation
f^(n)(z_0) = fracn!2pi i int_Gamma fracf(zeta)(zeta - z_0)^n+1dzeta hspace1cm (n=1,2,3, cdots )
endequation
endboxedthm
beginboxedthm
(Cauchy's Integral Formula) Let $Gamma$ be a simple closed positively oriented contour. If $f$ is analytic in some simply connected domain $D$ containing $Gamma$ and $z_0$ is any point inside $Gamma$, then
beginequation
f(z_0)= frac12pi i int_Gamma fracf(z)z-z_0 dz
endequation
endboxedthm
noindent hrulefill
begintheorem
If f is analytic in the disk $|z-z_0|<R'$, then the Taylor series $(1)$ converges to $f(z)$ for all $z$ in this disk.
endtheorem
enddocument
add a comment |
Here is a solution with thmtools
, which cooperates wit amsthm
. Unrelated: you don't have to load amsmath
if you load mathtools
, as the latter does it for you:
documentclassarticle
usepackageamsthm, thmtools
usepackagemathtools
usepackage[left=1.5in, right=1.5in, top=0.5in]geometry
newtheoremdefinitionDefinition
newtheoremtheoremTheorem
declaretheorem[sibling=definition, shaded=rulecolor=black, rulewidth=0.6pt, bgcolor=rgb1,1,1,name=Definition]boxeddef
declaretheorem[sibling=theorem, shaded=rulecolor=black, rulewidth=0.6pt, bgcolor=rgb1,1,1,name=Theorem]boxedthm
begindocument
titleExtra Credit
author
maketitle
beginboxeddef
If f is analytic at $z_0$, then the series
beginequation
f(z_0) + f'(z_0)(z-z_0) + fracf''(z_0)2!(z-z_0)^2 + cdots = sum_n=0^infty fracf^(n)(z_0)n!(z-z_0)^n
endequation
is called the Taylor series for f around $z_0$.
endboxeddef
beginboxedthm
If f is analytic inside and on the simple closed positively oriented contour $Gamma$ and if $z_0$ is any point inside $Gamma$, then
beginequation
f^(n)(z_0) = fracn!2pi i int_Gamma fracf(zeta)(zeta - z_0)^n+1dzeta hspace1cm (n=1,2,3, cdots )
endequation
endboxedthm
beginboxedthm
(Cauchy's Integral Formula) Let $Gamma$ be a simple closed positively oriented contour. If $f$ is analytic in some simply connected domain $D$ containing $Gamma$ and $z_0$ is any point inside $Gamma$, then
beginequation
f(z_0)= frac12pi i int_Gamma fracf(z)z-z_0 dz
endequation
endboxedthm
noindent hrulefill
begintheorem
If f is analytic in the disk $|z-z_0|<R'$, then the Taylor series $(1)$ converges to $f(z)$ for all $z$ in this disk.
endtheorem
enddocument
add a comment |
Here is a solution with thmtools
, which cooperates wit amsthm
. Unrelated: you don't have to load amsmath
if you load mathtools
, as the latter does it for you:
documentclassarticle
usepackageamsthm, thmtools
usepackagemathtools
usepackage[left=1.5in, right=1.5in, top=0.5in]geometry
newtheoremdefinitionDefinition
newtheoremtheoremTheorem
declaretheorem[sibling=definition, shaded=rulecolor=black, rulewidth=0.6pt, bgcolor=rgb1,1,1,name=Definition]boxeddef
declaretheorem[sibling=theorem, shaded=rulecolor=black, rulewidth=0.6pt, bgcolor=rgb1,1,1,name=Theorem]boxedthm
begindocument
titleExtra Credit
author
maketitle
beginboxeddef
If f is analytic at $z_0$, then the series
beginequation
f(z_0) + f'(z_0)(z-z_0) + fracf''(z_0)2!(z-z_0)^2 + cdots = sum_n=0^infty fracf^(n)(z_0)n!(z-z_0)^n
endequation
is called the Taylor series for f around $z_0$.
endboxeddef
beginboxedthm
If f is analytic inside and on the simple closed positively oriented contour $Gamma$ and if $z_0$ is any point inside $Gamma$, then
beginequation
f^(n)(z_0) = fracn!2pi i int_Gamma fracf(zeta)(zeta - z_0)^n+1dzeta hspace1cm (n=1,2,3, cdots )
endequation
endboxedthm
beginboxedthm
(Cauchy's Integral Formula) Let $Gamma$ be a simple closed positively oriented contour. If $f$ is analytic in some simply connected domain $D$ containing $Gamma$ and $z_0$ is any point inside $Gamma$, then
beginequation
f(z_0)= frac12pi i int_Gamma fracf(z)z-z_0 dz
endequation
endboxedthm
noindent hrulefill
begintheorem
If f is analytic in the disk $|z-z_0|<R'$, then the Taylor series $(1)$ converges to $f(z)$ for all $z$ in this disk.
endtheorem
enddocument
Here is a solution with thmtools
, which cooperates wit amsthm
. Unrelated: you don't have to load amsmath
if you load mathtools
, as the latter does it for you:
documentclassarticle
usepackageamsthm, thmtools
usepackagemathtools
usepackage[left=1.5in, right=1.5in, top=0.5in]geometry
newtheoremdefinitionDefinition
newtheoremtheoremTheorem
declaretheorem[sibling=definition, shaded=rulecolor=black, rulewidth=0.6pt, bgcolor=rgb1,1,1,name=Definition]boxeddef
declaretheorem[sibling=theorem, shaded=rulecolor=black, rulewidth=0.6pt, bgcolor=rgb1,1,1,name=Theorem]boxedthm
begindocument
titleExtra Credit
author
maketitle
beginboxeddef
If f is analytic at $z_0$, then the series
beginequation
f(z_0) + f'(z_0)(z-z_0) + fracf''(z_0)2!(z-z_0)^2 + cdots = sum_n=0^infty fracf^(n)(z_0)n!(z-z_0)^n
endequation
is called the Taylor series for f around $z_0$.
endboxeddef
beginboxedthm
If f is analytic inside and on the simple closed positively oriented contour $Gamma$ and if $z_0$ is any point inside $Gamma$, then
beginequation
f^(n)(z_0) = fracn!2pi i int_Gamma fracf(zeta)(zeta - z_0)^n+1dzeta hspace1cm (n=1,2,3, cdots )
endequation
endboxedthm
beginboxedthm
(Cauchy's Integral Formula) Let $Gamma$ be a simple closed positively oriented contour. If $f$ is analytic in some simply connected domain $D$ containing $Gamma$ and $z_0$ is any point inside $Gamma$, then
beginequation
f(z_0)= frac12pi i int_Gamma fracf(z)z-z_0 dz
endequation
endboxedthm
noindent hrulefill
begintheorem
If f is analytic in the disk $|z-z_0|<R'$, then the Taylor series $(1)$ converges to $f(z)$ for all $z$ in this disk.
endtheorem
enddocument
answered Apr 2 at 22:40
BernardBernard
175k778208
175k778208
add a comment |
add a comment |
K.M is a new contributor. Be nice, and check out our Code of Conduct.
K.M is a new contributor. Be nice, and check out our Code of Conduct.
K.M is a new contributor. Be nice, and check out our Code of Conduct.
K.M is a new contributor. Be nice, and check out our Code of Conduct.
Thanks for contributing an answer to TeX - LaTeX Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2ftex.stackexchange.com%2fquestions%2f482860%2fhow-to-enclose-theorems-and-definition-in-rectangles%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Do you want all theorems/definition to be enclosed in a frame, or only some?
– Bernard
Apr 2 at 21:55
I would like all theorems/definitions to be enclosed in a frame except for Theorem 3
– K.M
Apr 2 at 21:57
In this case you should take a look at the
newframedtheorem
command inntheorem
.– Bernard
Apr 2 at 22:06