Opamp stability given in not inverting configuration The Next CEO of Stack OverflowWhat does it mean for amplifiers to be stable only down to N gain, where N > unity?How can you guarantee stability of an inverting opamp configuration amplifier?Cascaded vs. non-cascaded bridge-tied load circuits using opampsWhat is the typical error of a voltage follower opampTerminating unused unity-gain Unstable op-ampOpamp AB Class Current BufferDelay and Stablity in Negative Feedback Systems: ConfusionAPD Transimpedance amplifier stabilityWhat will be the output of opamp non inverting amplifier at 0v inputWhat is this opamp configuration?

Is 'diverse range' a pleonastic phrase?

Is micro rebar a better way to reinforce concrete than rebar?

Why do airplanes bank sharply to the right after air-to-air refueling?

Is it professional to write unrelated content in an almost-empty email?

What can we do to stop prior company from asking us questions?

Why am I allowed to create multiple unique pointers from a single object?

How to start emacs in "nothing" mode (`fundamental-mode`)

WOW air has ceased operation, can I get my tickets refunded?

What is the result of assigning to std::vector<T>::begin()?

Is there a way to save my career from absolute disaster?

How do I reset passwords on multiple websites easily?

Is it ever safe to open a suspicious html file (e.g. email attachment)?

How to safely derail a train during transit?

Calculus II Question

What connection does MS Office have to Netscape Navigator?

Anatomically Correct Strange Women In Ponds Distributing Swords

Why has the US not been more assertive in confronting Russia in recent years?

Make solar eclipses exceedingly rare, but still have new moons

How do I make a variable always equal to the result of some calculations?

Is there a difference between "Fahrstuhl" and "Aufzug"

What's the best way to handle refactoring a big file?

Indicator light circuit

Is "for causing autism in X" grammatical?

How to avoid supervisors with prejudiced views?



Opamp stability given in not inverting configuration



The Next CEO of Stack OverflowWhat does it mean for amplifiers to be stable only down to N gain, where N > unity?How can you guarantee stability of an inverting opamp configuration amplifier?Cascaded vs. non-cascaded bridge-tied load circuits using opampsWhat is the typical error of a voltage follower opampTerminating unused unity-gain Unstable op-ampOpamp AB Class Current BufferDelay and Stablity in Negative Feedback Systems: ConfusionAPD Transimpedance amplifier stabilityWhat will be the output of opamp non inverting amplifier at 0v inputWhat is this opamp configuration?










9












$begingroup$


If a datasheet (like AD828) says that an opamp is stable at Gain >2 (or reccomends to work with G>2, hence it is clearly not unity gain stable), what can we deduct about its stability in the inverting configuration at G=-1; G=-2 or G<<-2 (like in any transimpedance amplifier configuration)?
Is it always instable in the three above cases if not compensated?










share|improve this question











$endgroup$











  • $begingroup$
    Good question. The dynamic performance is also specified at G= -1, so it would seem that it is also stable below -1, but im not sure.
    $endgroup$
    – Linkyyy
    yesterday






  • 1




    $begingroup$
    @Linkyyy Are you sure that you do not mean: so it would seem that it is also INstable at G = -1 The loopgain does not change for G = 1 vs G = -1. It is also the loopgain that determines (in)stability. G= -1 vs G = +1 only differs in the way where the input signal is applied.
    $endgroup$
    – Bimpelrekkie
    yesterday






  • 1




    $begingroup$
    transimpedance amplifier configuration I think that the transimpedance amplifier is a bad example here as the ones I know all apply the input (current) at the - input so basically they're all inverting. I think we should only consider voltage amplifiers instead as these can be inverting and non inverting.
    $endgroup$
    – Bimpelrekkie
    yesterday










  • $begingroup$
    It's a video amplifier so why are you even considering as a TIA?
    $endgroup$
    – Andy aka
    yesterday






  • 1




    $begingroup$
    @Linkyyy the bandwidth at -1 is substantially lower than what is given at G=+2 You're comparing apples to pears. It is only fair to compare G = -1 vs G = 1 or G= 2 vs G = -2. The BW will be different between G = +/-1 and G=+/-2 because GBW product is constant.
    $endgroup$
    – Bimpelrekkie
    yesterday















9












$begingroup$


If a datasheet (like AD828) says that an opamp is stable at Gain >2 (or reccomends to work with G>2, hence it is clearly not unity gain stable), what can we deduct about its stability in the inverting configuration at G=-1; G=-2 or G<<-2 (like in any transimpedance amplifier configuration)?
Is it always instable in the three above cases if not compensated?










share|improve this question











$endgroup$











  • $begingroup$
    Good question. The dynamic performance is also specified at G= -1, so it would seem that it is also stable below -1, but im not sure.
    $endgroup$
    – Linkyyy
    yesterday






  • 1




    $begingroup$
    @Linkyyy Are you sure that you do not mean: so it would seem that it is also INstable at G = -1 The loopgain does not change for G = 1 vs G = -1. It is also the loopgain that determines (in)stability. G= -1 vs G = +1 only differs in the way where the input signal is applied.
    $endgroup$
    – Bimpelrekkie
    yesterday






  • 1




    $begingroup$
    transimpedance amplifier configuration I think that the transimpedance amplifier is a bad example here as the ones I know all apply the input (current) at the - input so basically they're all inverting. I think we should only consider voltage amplifiers instead as these can be inverting and non inverting.
    $endgroup$
    – Bimpelrekkie
    yesterday










  • $begingroup$
    It's a video amplifier so why are you even considering as a TIA?
    $endgroup$
    – Andy aka
    yesterday






  • 1




    $begingroup$
    @Linkyyy the bandwidth at -1 is substantially lower than what is given at G=+2 You're comparing apples to pears. It is only fair to compare G = -1 vs G = 1 or G= 2 vs G = -2. The BW will be different between G = +/-1 and G=+/-2 because GBW product is constant.
    $endgroup$
    – Bimpelrekkie
    yesterday













9












9








9


2



$begingroup$


If a datasheet (like AD828) says that an opamp is stable at Gain >2 (or reccomends to work with G>2, hence it is clearly not unity gain stable), what can we deduct about its stability in the inverting configuration at G=-1; G=-2 or G<<-2 (like in any transimpedance amplifier configuration)?
Is it always instable in the three above cases if not compensated?










share|improve this question











$endgroup$




If a datasheet (like AD828) says that an opamp is stable at Gain >2 (or reccomends to work with G>2, hence it is clearly not unity gain stable), what can we deduct about its stability in the inverting configuration at G=-1; G=-2 or G<<-2 (like in any transimpedance amplifier configuration)?
Is it always instable in the three above cases if not compensated?







operational-amplifier gain stability inverting-amplifier






share|improve this question















share|improve this question













share|improve this question




share|improve this question








edited yesterday









Linkyyy

54139




54139










asked yesterday









Gianluca GGianluca G

857




857











  • $begingroup$
    Good question. The dynamic performance is also specified at G= -1, so it would seem that it is also stable below -1, but im not sure.
    $endgroup$
    – Linkyyy
    yesterday






  • 1




    $begingroup$
    @Linkyyy Are you sure that you do not mean: so it would seem that it is also INstable at G = -1 The loopgain does not change for G = 1 vs G = -1. It is also the loopgain that determines (in)stability. G= -1 vs G = +1 only differs in the way where the input signal is applied.
    $endgroup$
    – Bimpelrekkie
    yesterday






  • 1




    $begingroup$
    transimpedance amplifier configuration I think that the transimpedance amplifier is a bad example here as the ones I know all apply the input (current) at the - input so basically they're all inverting. I think we should only consider voltage amplifiers instead as these can be inverting and non inverting.
    $endgroup$
    – Bimpelrekkie
    yesterday










  • $begingroup$
    It's a video amplifier so why are you even considering as a TIA?
    $endgroup$
    – Andy aka
    yesterday






  • 1




    $begingroup$
    @Linkyyy the bandwidth at -1 is substantially lower than what is given at G=+2 You're comparing apples to pears. It is only fair to compare G = -1 vs G = 1 or G= 2 vs G = -2. The BW will be different between G = +/-1 and G=+/-2 because GBW product is constant.
    $endgroup$
    – Bimpelrekkie
    yesterday
















  • $begingroup$
    Good question. The dynamic performance is also specified at G= -1, so it would seem that it is also stable below -1, but im not sure.
    $endgroup$
    – Linkyyy
    yesterday






  • 1




    $begingroup$
    @Linkyyy Are you sure that you do not mean: so it would seem that it is also INstable at G = -1 The loopgain does not change for G = 1 vs G = -1. It is also the loopgain that determines (in)stability. G= -1 vs G = +1 only differs in the way where the input signal is applied.
    $endgroup$
    – Bimpelrekkie
    yesterday






  • 1




    $begingroup$
    transimpedance amplifier configuration I think that the transimpedance amplifier is a bad example here as the ones I know all apply the input (current) at the - input so basically they're all inverting. I think we should only consider voltage amplifiers instead as these can be inverting and non inverting.
    $endgroup$
    – Bimpelrekkie
    yesterday










  • $begingroup$
    It's a video amplifier so why are you even considering as a TIA?
    $endgroup$
    – Andy aka
    yesterday






  • 1




    $begingroup$
    @Linkyyy the bandwidth at -1 is substantially lower than what is given at G=+2 You're comparing apples to pears. It is only fair to compare G = -1 vs G = 1 or G= 2 vs G = -2. The BW will be different between G = +/-1 and G=+/-2 because GBW product is constant.
    $endgroup$
    – Bimpelrekkie
    yesterday















$begingroup$
Good question. The dynamic performance is also specified at G= -1, so it would seem that it is also stable below -1, but im not sure.
$endgroup$
– Linkyyy
yesterday




$begingroup$
Good question. The dynamic performance is also specified at G= -1, so it would seem that it is also stable below -1, but im not sure.
$endgroup$
– Linkyyy
yesterday




1




1




$begingroup$
@Linkyyy Are you sure that you do not mean: so it would seem that it is also INstable at G = -1 The loopgain does not change for G = 1 vs G = -1. It is also the loopgain that determines (in)stability. G= -1 vs G = +1 only differs in the way where the input signal is applied.
$endgroup$
– Bimpelrekkie
yesterday




$begingroup$
@Linkyyy Are you sure that you do not mean: so it would seem that it is also INstable at G = -1 The loopgain does not change for G = 1 vs G = -1. It is also the loopgain that determines (in)stability. G= -1 vs G = +1 only differs in the way where the input signal is applied.
$endgroup$
– Bimpelrekkie
yesterday




1




1




$begingroup$
transimpedance amplifier configuration I think that the transimpedance amplifier is a bad example here as the ones I know all apply the input (current) at the - input so basically they're all inverting. I think we should only consider voltage amplifiers instead as these can be inverting and non inverting.
$endgroup$
– Bimpelrekkie
yesterday




$begingroup$
transimpedance amplifier configuration I think that the transimpedance amplifier is a bad example here as the ones I know all apply the input (current) at the - input so basically they're all inverting. I think we should only consider voltage amplifiers instead as these can be inverting and non inverting.
$endgroup$
– Bimpelrekkie
yesterday












$begingroup$
It's a video amplifier so why are you even considering as a TIA?
$endgroup$
– Andy aka
yesterday




$begingroup$
It's a video amplifier so why are you even considering as a TIA?
$endgroup$
– Andy aka
yesterday




1




1




$begingroup$
@Linkyyy the bandwidth at -1 is substantially lower than what is given at G=+2 You're comparing apples to pears. It is only fair to compare G = -1 vs G = 1 or G= 2 vs G = -2. The BW will be different between G = +/-1 and G=+/-2 because GBW product is constant.
$endgroup$
– Bimpelrekkie
yesterday




$begingroup$
@Linkyyy the bandwidth at -1 is substantially lower than what is given at G=+2 You're comparing apples to pears. It is only fair to compare G = -1 vs G = 1 or G= 2 vs G = -2. The BW will be different between G = +/-1 and G=+/-2 because GBW product is constant.
$endgroup$
– Bimpelrekkie
yesterday










3 Answers
3






active

oldest

votes


















5












$begingroup$

Stability is a function of NOISE GAIN, not strictly the same thing as gain...



Noise gain follows the formula for the gain of a non inverting stage $$NG = 1 + Rf/Rg$$



For an inverting unity gain stage this will be 2, making the part stable in this configuration.






share|improve this answer









$endgroup$








  • 3




    $begingroup$
    Although I've been an analog designer for 25 years, I didn't know about "noise gain" but looking up what it is, it is strongly related to loop gain which is what I use to evaluate loop stability. I like the term "noise gain" though as it emphasizes that there is no relation between stability and the input signal of the circuit. Good reading material: analog.com/media/en/training-seminars/tutorials/MT-033.pdf
    $endgroup$
    – Bimpelrekkie
    yesterday











  • $begingroup$
    The classics are by Tobey, Graeme, Huelsman; two good books
    $endgroup$
    – analogsystemsrf
    yesterday










  • $begingroup$
    What is NG for a TIA? Infinite (Rg=0)?
    $endgroup$
    – Gianluca G
    yesterday


















0












$begingroup$

Loop gain is the stability determining factor.



Loop Gain = Beta * Ao where Beta = feedback fraction = R1/(R1+R2) and Ao = open loop gain.



1/Beta = Noise Gain.



So a non inverting amplifier with a closed loop gain of 2 (R1=R2, Beta = 0.5 and Noise Gain=2) has the same Beta and therefore the same noise gain as an inverting amplifier with a closed loop gain of -1 (R1=R2, Beta = 0.5 and Noise Gain = 2).



This means that an inverting amplifier with a gain of -1 is as stable as a non-inverting amplifier with a gain of 2.



In addition to Noise Gain being the stability determining factor, Noise Gain also determines the bandwidth of an amplifier.



Bandwidth = GBW/Noise Gain.



So a non-inverting amplifier with a gain of 2 (R1=R2) has the same bandwidth as an inverting amplifier with a gain of -1 (R1=R2).
If you make the closed loop gains of the two amplifiers both equal to 2 then the inverting amplifier will have a bandwidth equal to 2/3 the bandwidth of the non-inverting amplifier.



Non-Inverting amplifier with a closed loop gain of 2 has R1=R2 and a noise gain of 2.
Inverting amplifier with a closed loop gain of 2 has R2=2*R1 and a noise gain of 3.






share|improve this answer









$endgroup$








  • 1




    $begingroup$
    Take a look at the data sheet for the AD744 op amp which is stable for non-inverting gains of +2 or greater and also for inverting gains of -1 or greater. To be used as a unity gain follower this op amp requires extra compensation.
    $endgroup$
    – James
    yesterday


















-1












$begingroup$

Stabilty is a function of the total feedback phaseshift.



1) Rout + Cload: 100 ohms and 100pf are 10,000 picosecond time constant, producing 45 degrees phaseshift at 100 MegaRadians/second of 16MHz. Many opamps have Rout (internal output resistance) near 100 ohms; some have Rout >>> 1Kohms.



2) phase margin beyond 90 degrees: a 60 degree phase margin opamp (Unity Gain phase margin) has 90+30 = 120 degrees phase shift



3) phase shift at the virtual_ground node: assume 10pF on that node, and resistive equivalent (Rin || Rfb, or Rg || Rfb) of 1,000 ohms; this produces 10,000 picosecond tme constant, or 45 degrees at 16MHz.



What rescues a feedback network? Usually the parasitic feedback capacitance in parallel with the feedback resistor. IMHO






share|improve this answer









$endgroup$













    Your Answer





    StackExchange.ifUsing("editor", function ()
    return StackExchange.using("mathjaxEditing", function ()
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["\$", "\$"]]);
    );
    );
    , "mathjax-editing");

    StackExchange.ifUsing("editor", function ()
    return StackExchange.using("schematics", function ()
    StackExchange.schematics.init();
    );
    , "cicuitlab");

    StackExchange.ready(function()
    var channelOptions =
    tags: "".split(" "),
    id: "135"
    ;
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function()
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled)
    StackExchange.using("snippets", function()
    createEditor();
    );

    else
    createEditor();

    );

    function createEditor()
    StackExchange.prepareEditor(
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: false,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: null,
    bindNavPrevention: true,
    postfix: "",
    imageUploader:
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    ,
    onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    );



    );













    draft saved

    draft discarded


















    StackExchange.ready(
    function ()
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2felectronics.stackexchange.com%2fquestions%2f429479%2fopamp-stability-given-in-not-inverting-configuration%23new-answer', 'question_page');

    );

    Post as a guest















    Required, but never shown

























    3 Answers
    3






    active

    oldest

    votes








    3 Answers
    3






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    5












    $begingroup$

    Stability is a function of NOISE GAIN, not strictly the same thing as gain...



    Noise gain follows the formula for the gain of a non inverting stage $$NG = 1 + Rf/Rg$$



    For an inverting unity gain stage this will be 2, making the part stable in this configuration.






    share|improve this answer









    $endgroup$








    • 3




      $begingroup$
      Although I've been an analog designer for 25 years, I didn't know about "noise gain" but looking up what it is, it is strongly related to loop gain which is what I use to evaluate loop stability. I like the term "noise gain" though as it emphasizes that there is no relation between stability and the input signal of the circuit. Good reading material: analog.com/media/en/training-seminars/tutorials/MT-033.pdf
      $endgroup$
      – Bimpelrekkie
      yesterday











    • $begingroup$
      The classics are by Tobey, Graeme, Huelsman; two good books
      $endgroup$
      – analogsystemsrf
      yesterday










    • $begingroup$
      What is NG for a TIA? Infinite (Rg=0)?
      $endgroup$
      – Gianluca G
      yesterday















    5












    $begingroup$

    Stability is a function of NOISE GAIN, not strictly the same thing as gain...



    Noise gain follows the formula for the gain of a non inverting stage $$NG = 1 + Rf/Rg$$



    For an inverting unity gain stage this will be 2, making the part stable in this configuration.






    share|improve this answer









    $endgroup$








    • 3




      $begingroup$
      Although I've been an analog designer for 25 years, I didn't know about "noise gain" but looking up what it is, it is strongly related to loop gain which is what I use to evaluate loop stability. I like the term "noise gain" though as it emphasizes that there is no relation between stability and the input signal of the circuit. Good reading material: analog.com/media/en/training-seminars/tutorials/MT-033.pdf
      $endgroup$
      – Bimpelrekkie
      yesterday











    • $begingroup$
      The classics are by Tobey, Graeme, Huelsman; two good books
      $endgroup$
      – analogsystemsrf
      yesterday










    • $begingroup$
      What is NG for a TIA? Infinite (Rg=0)?
      $endgroup$
      – Gianluca G
      yesterday













    5












    5








    5





    $begingroup$

    Stability is a function of NOISE GAIN, not strictly the same thing as gain...



    Noise gain follows the formula for the gain of a non inverting stage $$NG = 1 + Rf/Rg$$



    For an inverting unity gain stage this will be 2, making the part stable in this configuration.






    share|improve this answer









    $endgroup$



    Stability is a function of NOISE GAIN, not strictly the same thing as gain...



    Noise gain follows the formula for the gain of a non inverting stage $$NG = 1 + Rf/Rg$$



    For an inverting unity gain stage this will be 2, making the part stable in this configuration.







    share|improve this answer












    share|improve this answer



    share|improve this answer










    answered yesterday









    Dan MillsDan Mills

    11.6k11124




    11.6k11124







    • 3




      $begingroup$
      Although I've been an analog designer for 25 years, I didn't know about "noise gain" but looking up what it is, it is strongly related to loop gain which is what I use to evaluate loop stability. I like the term "noise gain" though as it emphasizes that there is no relation between stability and the input signal of the circuit. Good reading material: analog.com/media/en/training-seminars/tutorials/MT-033.pdf
      $endgroup$
      – Bimpelrekkie
      yesterday











    • $begingroup$
      The classics are by Tobey, Graeme, Huelsman; two good books
      $endgroup$
      – analogsystemsrf
      yesterday










    • $begingroup$
      What is NG for a TIA? Infinite (Rg=0)?
      $endgroup$
      – Gianluca G
      yesterday












    • 3




      $begingroup$
      Although I've been an analog designer for 25 years, I didn't know about "noise gain" but looking up what it is, it is strongly related to loop gain which is what I use to evaluate loop stability. I like the term "noise gain" though as it emphasizes that there is no relation between stability and the input signal of the circuit. Good reading material: analog.com/media/en/training-seminars/tutorials/MT-033.pdf
      $endgroup$
      – Bimpelrekkie
      yesterday











    • $begingroup$
      The classics are by Tobey, Graeme, Huelsman; two good books
      $endgroup$
      – analogsystemsrf
      yesterday










    • $begingroup$
      What is NG for a TIA? Infinite (Rg=0)?
      $endgroup$
      – Gianluca G
      yesterday







    3




    3




    $begingroup$
    Although I've been an analog designer for 25 years, I didn't know about "noise gain" but looking up what it is, it is strongly related to loop gain which is what I use to evaluate loop stability. I like the term "noise gain" though as it emphasizes that there is no relation between stability and the input signal of the circuit. Good reading material: analog.com/media/en/training-seminars/tutorials/MT-033.pdf
    $endgroup$
    – Bimpelrekkie
    yesterday





    $begingroup$
    Although I've been an analog designer for 25 years, I didn't know about "noise gain" but looking up what it is, it is strongly related to loop gain which is what I use to evaluate loop stability. I like the term "noise gain" though as it emphasizes that there is no relation between stability and the input signal of the circuit. Good reading material: analog.com/media/en/training-seminars/tutorials/MT-033.pdf
    $endgroup$
    – Bimpelrekkie
    yesterday













    $begingroup$
    The classics are by Tobey, Graeme, Huelsman; two good books
    $endgroup$
    – analogsystemsrf
    yesterday




    $begingroup$
    The classics are by Tobey, Graeme, Huelsman; two good books
    $endgroup$
    – analogsystemsrf
    yesterday












    $begingroup$
    What is NG for a TIA? Infinite (Rg=0)?
    $endgroup$
    – Gianluca G
    yesterday




    $begingroup$
    What is NG for a TIA? Infinite (Rg=0)?
    $endgroup$
    – Gianluca G
    yesterday













    0












    $begingroup$

    Loop gain is the stability determining factor.



    Loop Gain = Beta * Ao where Beta = feedback fraction = R1/(R1+R2) and Ao = open loop gain.



    1/Beta = Noise Gain.



    So a non inverting amplifier with a closed loop gain of 2 (R1=R2, Beta = 0.5 and Noise Gain=2) has the same Beta and therefore the same noise gain as an inverting amplifier with a closed loop gain of -1 (R1=R2, Beta = 0.5 and Noise Gain = 2).



    This means that an inverting amplifier with a gain of -1 is as stable as a non-inverting amplifier with a gain of 2.



    In addition to Noise Gain being the stability determining factor, Noise Gain also determines the bandwidth of an amplifier.



    Bandwidth = GBW/Noise Gain.



    So a non-inverting amplifier with a gain of 2 (R1=R2) has the same bandwidth as an inverting amplifier with a gain of -1 (R1=R2).
    If you make the closed loop gains of the two amplifiers both equal to 2 then the inverting amplifier will have a bandwidth equal to 2/3 the bandwidth of the non-inverting amplifier.



    Non-Inverting amplifier with a closed loop gain of 2 has R1=R2 and a noise gain of 2.
    Inverting amplifier with a closed loop gain of 2 has R2=2*R1 and a noise gain of 3.






    share|improve this answer









    $endgroup$








    • 1




      $begingroup$
      Take a look at the data sheet for the AD744 op amp which is stable for non-inverting gains of +2 or greater and also for inverting gains of -1 or greater. To be used as a unity gain follower this op amp requires extra compensation.
      $endgroup$
      – James
      yesterday















    0












    $begingroup$

    Loop gain is the stability determining factor.



    Loop Gain = Beta * Ao where Beta = feedback fraction = R1/(R1+R2) and Ao = open loop gain.



    1/Beta = Noise Gain.



    So a non inverting amplifier with a closed loop gain of 2 (R1=R2, Beta = 0.5 and Noise Gain=2) has the same Beta and therefore the same noise gain as an inverting amplifier with a closed loop gain of -1 (R1=R2, Beta = 0.5 and Noise Gain = 2).



    This means that an inverting amplifier with a gain of -1 is as stable as a non-inverting amplifier with a gain of 2.



    In addition to Noise Gain being the stability determining factor, Noise Gain also determines the bandwidth of an amplifier.



    Bandwidth = GBW/Noise Gain.



    So a non-inverting amplifier with a gain of 2 (R1=R2) has the same bandwidth as an inverting amplifier with a gain of -1 (R1=R2).
    If you make the closed loop gains of the two amplifiers both equal to 2 then the inverting amplifier will have a bandwidth equal to 2/3 the bandwidth of the non-inverting amplifier.



    Non-Inverting amplifier with a closed loop gain of 2 has R1=R2 and a noise gain of 2.
    Inverting amplifier with a closed loop gain of 2 has R2=2*R1 and a noise gain of 3.






    share|improve this answer









    $endgroup$








    • 1




      $begingroup$
      Take a look at the data sheet for the AD744 op amp which is stable for non-inverting gains of +2 or greater and also for inverting gains of -1 or greater. To be used as a unity gain follower this op amp requires extra compensation.
      $endgroup$
      – James
      yesterday













    0












    0








    0





    $begingroup$

    Loop gain is the stability determining factor.



    Loop Gain = Beta * Ao where Beta = feedback fraction = R1/(R1+R2) and Ao = open loop gain.



    1/Beta = Noise Gain.



    So a non inverting amplifier with a closed loop gain of 2 (R1=R2, Beta = 0.5 and Noise Gain=2) has the same Beta and therefore the same noise gain as an inverting amplifier with a closed loop gain of -1 (R1=R2, Beta = 0.5 and Noise Gain = 2).



    This means that an inverting amplifier with a gain of -1 is as stable as a non-inverting amplifier with a gain of 2.



    In addition to Noise Gain being the stability determining factor, Noise Gain also determines the bandwidth of an amplifier.



    Bandwidth = GBW/Noise Gain.



    So a non-inverting amplifier with a gain of 2 (R1=R2) has the same bandwidth as an inverting amplifier with a gain of -1 (R1=R2).
    If you make the closed loop gains of the two amplifiers both equal to 2 then the inverting amplifier will have a bandwidth equal to 2/3 the bandwidth of the non-inverting amplifier.



    Non-Inverting amplifier with a closed loop gain of 2 has R1=R2 and a noise gain of 2.
    Inverting amplifier with a closed loop gain of 2 has R2=2*R1 and a noise gain of 3.






    share|improve this answer









    $endgroup$



    Loop gain is the stability determining factor.



    Loop Gain = Beta * Ao where Beta = feedback fraction = R1/(R1+R2) and Ao = open loop gain.



    1/Beta = Noise Gain.



    So a non inverting amplifier with a closed loop gain of 2 (R1=R2, Beta = 0.5 and Noise Gain=2) has the same Beta and therefore the same noise gain as an inverting amplifier with a closed loop gain of -1 (R1=R2, Beta = 0.5 and Noise Gain = 2).



    This means that an inverting amplifier with a gain of -1 is as stable as a non-inverting amplifier with a gain of 2.



    In addition to Noise Gain being the stability determining factor, Noise Gain also determines the bandwidth of an amplifier.



    Bandwidth = GBW/Noise Gain.



    So a non-inverting amplifier with a gain of 2 (R1=R2) has the same bandwidth as an inverting amplifier with a gain of -1 (R1=R2).
    If you make the closed loop gains of the two amplifiers both equal to 2 then the inverting amplifier will have a bandwidth equal to 2/3 the bandwidth of the non-inverting amplifier.



    Non-Inverting amplifier with a closed loop gain of 2 has R1=R2 and a noise gain of 2.
    Inverting amplifier with a closed loop gain of 2 has R2=2*R1 and a noise gain of 3.







    share|improve this answer












    share|improve this answer



    share|improve this answer










    answered yesterday









    JamesJames

    704




    704







    • 1




      $begingroup$
      Take a look at the data sheet for the AD744 op amp which is stable for non-inverting gains of +2 or greater and also for inverting gains of -1 or greater. To be used as a unity gain follower this op amp requires extra compensation.
      $endgroup$
      – James
      yesterday












    • 1




      $begingroup$
      Take a look at the data sheet for the AD744 op amp which is stable for non-inverting gains of +2 or greater and also for inverting gains of -1 or greater. To be used as a unity gain follower this op amp requires extra compensation.
      $endgroup$
      – James
      yesterday







    1




    1




    $begingroup$
    Take a look at the data sheet for the AD744 op amp which is stable for non-inverting gains of +2 or greater and also for inverting gains of -1 or greater. To be used as a unity gain follower this op amp requires extra compensation.
    $endgroup$
    – James
    yesterday




    $begingroup$
    Take a look at the data sheet for the AD744 op amp which is stable for non-inverting gains of +2 or greater and also for inverting gains of -1 or greater. To be used as a unity gain follower this op amp requires extra compensation.
    $endgroup$
    – James
    yesterday











    -1












    $begingroup$

    Stabilty is a function of the total feedback phaseshift.



    1) Rout + Cload: 100 ohms and 100pf are 10,000 picosecond time constant, producing 45 degrees phaseshift at 100 MegaRadians/second of 16MHz. Many opamps have Rout (internal output resistance) near 100 ohms; some have Rout >>> 1Kohms.



    2) phase margin beyond 90 degrees: a 60 degree phase margin opamp (Unity Gain phase margin) has 90+30 = 120 degrees phase shift



    3) phase shift at the virtual_ground node: assume 10pF on that node, and resistive equivalent (Rin || Rfb, or Rg || Rfb) of 1,000 ohms; this produces 10,000 picosecond tme constant, or 45 degrees at 16MHz.



    What rescues a feedback network? Usually the parasitic feedback capacitance in parallel with the feedback resistor. IMHO






    share|improve this answer









    $endgroup$

















      -1












      $begingroup$

      Stabilty is a function of the total feedback phaseshift.



      1) Rout + Cload: 100 ohms and 100pf are 10,000 picosecond time constant, producing 45 degrees phaseshift at 100 MegaRadians/second of 16MHz. Many opamps have Rout (internal output resistance) near 100 ohms; some have Rout >>> 1Kohms.



      2) phase margin beyond 90 degrees: a 60 degree phase margin opamp (Unity Gain phase margin) has 90+30 = 120 degrees phase shift



      3) phase shift at the virtual_ground node: assume 10pF on that node, and resistive equivalent (Rin || Rfb, or Rg || Rfb) of 1,000 ohms; this produces 10,000 picosecond tme constant, or 45 degrees at 16MHz.



      What rescues a feedback network? Usually the parasitic feedback capacitance in parallel with the feedback resistor. IMHO






      share|improve this answer









      $endgroup$















        -1












        -1








        -1





        $begingroup$

        Stabilty is a function of the total feedback phaseshift.



        1) Rout + Cload: 100 ohms and 100pf are 10,000 picosecond time constant, producing 45 degrees phaseshift at 100 MegaRadians/second of 16MHz. Many opamps have Rout (internal output resistance) near 100 ohms; some have Rout >>> 1Kohms.



        2) phase margin beyond 90 degrees: a 60 degree phase margin opamp (Unity Gain phase margin) has 90+30 = 120 degrees phase shift



        3) phase shift at the virtual_ground node: assume 10pF on that node, and resistive equivalent (Rin || Rfb, or Rg || Rfb) of 1,000 ohms; this produces 10,000 picosecond tme constant, or 45 degrees at 16MHz.



        What rescues a feedback network? Usually the parasitic feedback capacitance in parallel with the feedback resistor. IMHO






        share|improve this answer









        $endgroup$



        Stabilty is a function of the total feedback phaseshift.



        1) Rout + Cload: 100 ohms and 100pf are 10,000 picosecond time constant, producing 45 degrees phaseshift at 100 MegaRadians/second of 16MHz. Many opamps have Rout (internal output resistance) near 100 ohms; some have Rout >>> 1Kohms.



        2) phase margin beyond 90 degrees: a 60 degree phase margin opamp (Unity Gain phase margin) has 90+30 = 120 degrees phase shift



        3) phase shift at the virtual_ground node: assume 10pF on that node, and resistive equivalent (Rin || Rfb, or Rg || Rfb) of 1,000 ohms; this produces 10,000 picosecond tme constant, or 45 degrees at 16MHz.



        What rescues a feedback network? Usually the parasitic feedback capacitance in parallel with the feedback resistor. IMHO







        share|improve this answer












        share|improve this answer



        share|improve this answer










        answered yesterday









        analogsystemsrfanalogsystemsrf

        15.8k2822




        15.8k2822



























            draft saved

            draft discarded
















































            Thanks for contributing an answer to Electrical Engineering Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid


            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.

            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2felectronics.stackexchange.com%2fquestions%2f429479%2fopamp-stability-given-in-not-inverting-configuration%23new-answer', 'question_page');

            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Crop image to path created in TikZ? Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern)Crop an inserted image?TikZ pictures does not appear in posterImage behind and beyond crop marks?Tikz picture as large as possible on A4 PageTransparency vs image compression dilemmaHow to crop background from image automatically?Image does not cropTikzexternal capturing crop marks when externalizing pgfplots?How to include image path that contains a dollar signCrop image with left size given

            រឿង រ៉ូមេអូ និង ហ្ស៊ុយលីយេ សង្ខេបរឿង តួអង្គ បញ្ជីណែនាំ

            Ромео және Джульетта Мазмұны Қысқаша сипаттамасы Кейіпкерлері Кино Дереккөздер Бағыттау мәзірі