Writing differences on a blackboard The Next CEO of Stack OverflowDo better than chanceBinary manipulation gameLost In Boston: How do I Get Home?Trying to understand an unusual timestamp encountered on the webThe game of 1036Addition hangmanObtain the “Master of stones” titleMonte Carlo ChessPicking A Number Gamesystematic number removal

How to pronounce fünf in 45

How dangerous is XSS

Why did the Drakh emissary look so blurred in S04:E11 "Lines of Communication"?

Can a PhD from a non-TU9 German university become a professor in a TU9 university?

What is the difference between 'contrib' and 'non-free' packages repositories?

How badly should I try to prevent a user from XSSing themselves?

How to compactly explain secondary and tertiary characters without resorting to stereotypes?

Is it possible to make a 9x9 table fit within the default margins?

How can I replace x-axis labels with pre-determined symbols?

Early programmable calculators with RS-232

Airship steam engine room - problems and conflict

What did the word "leisure" mean in late 18th Century usage?

Is a linearly independent set whose span is dense a Schauder basis?

Can you teleport closer to a creature you are Frightened of?

Upgrading From a 9 Speed Sora Derailleur?

Can I cast Thunderwave and be at the center of its bottom face, but not be affected by it?

Would a grinding machine be a simple and workable propulsion system for an interplanetary spacecraft?

Gauss' Posthumous Publications?

Why did early computer designers eschew integers?

Compensation for working overtime on Saturdays

How can I prove that a state of equilibrium is unstable?

How to show a landlord what we have in savings?

Cannot restore registry to default in Windows 10?

What steps are necessary to read a Modern SSD in Medieval Europe?



Writing differences on a blackboard



The Next CEO of Stack OverflowDo better than chanceBinary manipulation gameLost In Boston: How do I Get Home?Trying to understand an unusual timestamp encountered on the webThe game of 1036Addition hangmanObtain the “Master of stones” titleMonte Carlo ChessPicking A Number Gamesystematic number removal










6












$begingroup$


The numbers 25 and 36 are written on a blackboard. At each turn,
a player writes on the blackboard the (positive) difference between two numbers
already on the blackboard, if this number does not already appear on the blackboard. The loser is the player who cannot write a number.



I tried but wasn't able to find any approach to this.



Original source appears to be: Mathematical Circles (Russian Experience), page 58.










share|improve this question









New contributor




all about everything is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$







  • 4




    $begingroup$
    What's the question? "Which player has a winning strategy" maybe?
    $endgroup$
    – 2012rcampion
    2 days ago






  • 1




    $begingroup$
    Hi and welcome to Puzzling SE! This looks like a puzzle you found elsewhere. For content you did not create yourself, proper attribution is required. If you have permission to repost this, please edit to include (at minimum) where it came from, then vote to reopen. Posts which use someone else's content without attribution are generally deleted.
    $endgroup$
    – Akari
    2 days ago






  • 2




    $begingroup$
    P.S. The wording of the above comment are taken from Rubio's answer here This wasn't added in the above comment as it was exceeding the word limit by 42 characters.
    $endgroup$
    – Akari
    2 days ago







  • 1




    $begingroup$
    (Thanks @Akari. I was able to find what seems to be the original source, and added it. $@!$ all about everything, please be mindful of our attribution requirements here going forward. Thanks for contributing and welcome to Puzzling!)
    $endgroup$
    – Rubio
    2 days ago
















6












$begingroup$


The numbers 25 and 36 are written on a blackboard. At each turn,
a player writes on the blackboard the (positive) difference between two numbers
already on the blackboard, if this number does not already appear on the blackboard. The loser is the player who cannot write a number.



I tried but wasn't able to find any approach to this.



Original source appears to be: Mathematical Circles (Russian Experience), page 58.










share|improve this question









New contributor




all about everything is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$







  • 4




    $begingroup$
    What's the question? "Which player has a winning strategy" maybe?
    $endgroup$
    – 2012rcampion
    2 days ago






  • 1




    $begingroup$
    Hi and welcome to Puzzling SE! This looks like a puzzle you found elsewhere. For content you did not create yourself, proper attribution is required. If you have permission to repost this, please edit to include (at minimum) where it came from, then vote to reopen. Posts which use someone else's content without attribution are generally deleted.
    $endgroup$
    – Akari
    2 days ago






  • 2




    $begingroup$
    P.S. The wording of the above comment are taken from Rubio's answer here This wasn't added in the above comment as it was exceeding the word limit by 42 characters.
    $endgroup$
    – Akari
    2 days ago







  • 1




    $begingroup$
    (Thanks @Akari. I was able to find what seems to be the original source, and added it. $@!$ all about everything, please be mindful of our attribution requirements here going forward. Thanks for contributing and welcome to Puzzling!)
    $endgroup$
    – Rubio
    2 days ago














6












6








6





$begingroup$


The numbers 25 and 36 are written on a blackboard. At each turn,
a player writes on the blackboard the (positive) difference between two numbers
already on the blackboard, if this number does not already appear on the blackboard. The loser is the player who cannot write a number.



I tried but wasn't able to find any approach to this.



Original source appears to be: Mathematical Circles (Russian Experience), page 58.










share|improve this question









New contributor




all about everything is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$




The numbers 25 and 36 are written on a blackboard. At each turn,
a player writes on the blackboard the (positive) difference between two numbers
already on the blackboard, if this number does not already appear on the blackboard. The loser is the player who cannot write a number.



I tried but wasn't able to find any approach to this.



Original source appears to be: Mathematical Circles (Russian Experience), page 58.







logical-deduction calculation-puzzle strategy game






share|improve this question









New contributor




all about everything is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.











share|improve this question









New contributor




all about everything is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.









share|improve this question




share|improve this question








edited 2 days ago









Rubio

30.4k567188




30.4k567188






New contributor




all about everything is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.









asked 2 days ago









all about everythingall about everything

311




311




New contributor




all about everything is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.





New contributor





all about everything is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.






all about everything is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







  • 4




    $begingroup$
    What's the question? "Which player has a winning strategy" maybe?
    $endgroup$
    – 2012rcampion
    2 days ago






  • 1




    $begingroup$
    Hi and welcome to Puzzling SE! This looks like a puzzle you found elsewhere. For content you did not create yourself, proper attribution is required. If you have permission to repost this, please edit to include (at minimum) where it came from, then vote to reopen. Posts which use someone else's content without attribution are generally deleted.
    $endgroup$
    – Akari
    2 days ago






  • 2




    $begingroup$
    P.S. The wording of the above comment are taken from Rubio's answer here This wasn't added in the above comment as it was exceeding the word limit by 42 characters.
    $endgroup$
    – Akari
    2 days ago







  • 1




    $begingroup$
    (Thanks @Akari. I was able to find what seems to be the original source, and added it. $@!$ all about everything, please be mindful of our attribution requirements here going forward. Thanks for contributing and welcome to Puzzling!)
    $endgroup$
    – Rubio
    2 days ago













  • 4




    $begingroup$
    What's the question? "Which player has a winning strategy" maybe?
    $endgroup$
    – 2012rcampion
    2 days ago






  • 1




    $begingroup$
    Hi and welcome to Puzzling SE! This looks like a puzzle you found elsewhere. For content you did not create yourself, proper attribution is required. If you have permission to repost this, please edit to include (at minimum) where it came from, then vote to reopen. Posts which use someone else's content without attribution are generally deleted.
    $endgroup$
    – Akari
    2 days ago






  • 2




    $begingroup$
    P.S. The wording of the above comment are taken from Rubio's answer here This wasn't added in the above comment as it was exceeding the word limit by 42 characters.
    $endgroup$
    – Akari
    2 days ago







  • 1




    $begingroup$
    (Thanks @Akari. I was able to find what seems to be the original source, and added it. $@!$ all about everything, please be mindful of our attribution requirements here going forward. Thanks for contributing and welcome to Puzzling!)
    $endgroup$
    – Rubio
    2 days ago








4




4




$begingroup$
What's the question? "Which player has a winning strategy" maybe?
$endgroup$
– 2012rcampion
2 days ago




$begingroup$
What's the question? "Which player has a winning strategy" maybe?
$endgroup$
– 2012rcampion
2 days ago




1




1




$begingroup$
Hi and welcome to Puzzling SE! This looks like a puzzle you found elsewhere. For content you did not create yourself, proper attribution is required. If you have permission to repost this, please edit to include (at minimum) where it came from, then vote to reopen. Posts which use someone else's content without attribution are generally deleted.
$endgroup$
– Akari
2 days ago




$begingroup$
Hi and welcome to Puzzling SE! This looks like a puzzle you found elsewhere. For content you did not create yourself, proper attribution is required. If you have permission to repost this, please edit to include (at minimum) where it came from, then vote to reopen. Posts which use someone else's content without attribution are generally deleted.
$endgroup$
– Akari
2 days ago




2




2




$begingroup$
P.S. The wording of the above comment are taken from Rubio's answer here This wasn't added in the above comment as it was exceeding the word limit by 42 characters.
$endgroup$
– Akari
2 days ago





$begingroup$
P.S. The wording of the above comment are taken from Rubio's answer here This wasn't added in the above comment as it was exceeding the word limit by 42 characters.
$endgroup$
– Akari
2 days ago





1




1




$begingroup$
(Thanks @Akari. I was able to find what seems to be the original source, and added it. $@!$ all about everything, please be mindful of our attribution requirements here going forward. Thanks for contributing and welcome to Puzzling!)
$endgroup$
– Rubio
2 days ago





$begingroup$
(Thanks @Akari. I was able to find what seems to be the original source, and added it. $@!$ all about everything, please be mindful of our attribution requirements here going forward. Thanks for contributing and welcome to Puzzling!)
$endgroup$
– Rubio
2 days ago











3 Answers
3






active

oldest

votes


















8












$begingroup$


The numbers $25$ and $36$ are coprime. This means that if we continually replace the largest of the two numbers by the (positive) difference of the two numbers, we are essentially performing the Euclidean algorithm for finding their GCD, and will eventually get a $1$. The sequence is $36$, $25$, $36-25=11$, $25-11=14$, $14-11=3$, $11-3=8$, $8-3=5$, $5-3=2$, $3-2=1$.

Once there is a $1$ on the board, you can repeatedly subtract it to fill in any gaps and eventually produce every number from $1$ to $36$. This shows that if you have two cooperating players, all number from $1$ to $36$ can be produced.

But this also happens when the game is played between two non-cooperating players. It is impossible to prevent any of the numbers appearing. If any number in the euclidean sequence is not on the board, then there are still moves available. So eventually $1$ must be produced, and then as long as there are missing numbers between $1$ and $36$, there is at least one move available.
This means that regardless of what moves are played, all numbers $1$ to $36$ will appear. We started with $2$ numbers on the board, so the game ends after $34$ moves.




The result is that




The game always ends after $34$ moves, after which the first player cannot move and loses.







share|improve this answer











$endgroup$








  • 4




    $begingroup$
    Beat me by a minute, nice one :-)
    $endgroup$
    – Rand al'Thor
    2 days ago


















5












$begingroup$

The key fact is as follows:




The only time the game can end is when the numbers are in the form $k,2k,3k,4k,dots,ak$ for some fixed $a$ and $kgeq1$. This is because, given two numbers $m$ and $n$ on the board, we can always apply repeated subtraction between them to reach their GCD, and then from there to reach every multiple of their GCD up to $textmax(m,n)$.




Therefore this particular game ends when the numbers on the board are




$1,2,3,4,dots,35,36$. This will take a total of 34 moves, since there are two numbers at the start and a new one is written each time.




So the conclusion is




no matter how the game goes, the first player loses, since 34 is even.







share|improve this answer









$endgroup$








  • 2




    $begingroup$
    Beat me by about 3 seconds :) Oh, and Jaap beat the two of us as well.
    $endgroup$
    – Arnaud Mortier
    2 days ago



















3












$begingroup$

Answer:




The player who plays first will lose, no matter what choices the player make.




This is because




The Euclidean algorithm tells you that as long as $1$ (the gcd of $25$ and $36$) is not on the board, there are legal ways to continue the process. Now, from the moment when $1$ does appear on the board, no matter how long it took to get there, every positive number between $1$ and $36$ becomes reachable.




Therefore




no matter what path is taken, the amount of steps before the game is over is $34$, one for each integer between $1$ and $36$, excluding the two already on the board at the beginning of the game.







share|improve this answer









$endgroup$













    Your Answer





    StackExchange.ifUsing("editor", function ()
    return StackExchange.using("mathjaxEditing", function ()
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    );
    );
    , "mathjax-editing");

    StackExchange.ready(function()
    var channelOptions =
    tags: "".split(" "),
    id: "559"
    ;
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function()
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled)
    StackExchange.using("snippets", function()
    createEditor();
    );

    else
    createEditor();

    );

    function createEditor()
    StackExchange.prepareEditor(
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: false,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: null,
    bindNavPrevention: true,
    postfix: "",
    imageUploader:
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    ,
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    );



    );






    all about everything is a new contributor. Be nice, and check out our Code of Conduct.









    draft saved

    draft discarded


















    StackExchange.ready(
    function ()
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fpuzzling.stackexchange.com%2fquestions%2f81214%2fwriting-differences-on-a-blackboard%23new-answer', 'question_page');

    );

    Post as a guest















    Required, but never shown

























    3 Answers
    3






    active

    oldest

    votes








    3 Answers
    3






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    8












    $begingroup$


    The numbers $25$ and $36$ are coprime. This means that if we continually replace the largest of the two numbers by the (positive) difference of the two numbers, we are essentially performing the Euclidean algorithm for finding their GCD, and will eventually get a $1$. The sequence is $36$, $25$, $36-25=11$, $25-11=14$, $14-11=3$, $11-3=8$, $8-3=5$, $5-3=2$, $3-2=1$.

    Once there is a $1$ on the board, you can repeatedly subtract it to fill in any gaps and eventually produce every number from $1$ to $36$. This shows that if you have two cooperating players, all number from $1$ to $36$ can be produced.

    But this also happens when the game is played between two non-cooperating players. It is impossible to prevent any of the numbers appearing. If any number in the euclidean sequence is not on the board, then there are still moves available. So eventually $1$ must be produced, and then as long as there are missing numbers between $1$ and $36$, there is at least one move available.
    This means that regardless of what moves are played, all numbers $1$ to $36$ will appear. We started with $2$ numbers on the board, so the game ends after $34$ moves.




    The result is that




    The game always ends after $34$ moves, after which the first player cannot move and loses.







    share|improve this answer











    $endgroup$








    • 4




      $begingroup$
      Beat me by a minute, nice one :-)
      $endgroup$
      – Rand al'Thor
      2 days ago















    8












    $begingroup$


    The numbers $25$ and $36$ are coprime. This means that if we continually replace the largest of the two numbers by the (positive) difference of the two numbers, we are essentially performing the Euclidean algorithm for finding their GCD, and will eventually get a $1$. The sequence is $36$, $25$, $36-25=11$, $25-11=14$, $14-11=3$, $11-3=8$, $8-3=5$, $5-3=2$, $3-2=1$.

    Once there is a $1$ on the board, you can repeatedly subtract it to fill in any gaps and eventually produce every number from $1$ to $36$. This shows that if you have two cooperating players, all number from $1$ to $36$ can be produced.

    But this also happens when the game is played between two non-cooperating players. It is impossible to prevent any of the numbers appearing. If any number in the euclidean sequence is not on the board, then there are still moves available. So eventually $1$ must be produced, and then as long as there are missing numbers between $1$ and $36$, there is at least one move available.
    This means that regardless of what moves are played, all numbers $1$ to $36$ will appear. We started with $2$ numbers on the board, so the game ends after $34$ moves.




    The result is that




    The game always ends after $34$ moves, after which the first player cannot move and loses.







    share|improve this answer











    $endgroup$








    • 4




      $begingroup$
      Beat me by a minute, nice one :-)
      $endgroup$
      – Rand al'Thor
      2 days ago













    8












    8








    8





    $begingroup$


    The numbers $25$ and $36$ are coprime. This means that if we continually replace the largest of the two numbers by the (positive) difference of the two numbers, we are essentially performing the Euclidean algorithm for finding their GCD, and will eventually get a $1$. The sequence is $36$, $25$, $36-25=11$, $25-11=14$, $14-11=3$, $11-3=8$, $8-3=5$, $5-3=2$, $3-2=1$.

    Once there is a $1$ on the board, you can repeatedly subtract it to fill in any gaps and eventually produce every number from $1$ to $36$. This shows that if you have two cooperating players, all number from $1$ to $36$ can be produced.

    But this also happens when the game is played between two non-cooperating players. It is impossible to prevent any of the numbers appearing. If any number in the euclidean sequence is not on the board, then there are still moves available. So eventually $1$ must be produced, and then as long as there are missing numbers between $1$ and $36$, there is at least one move available.
    This means that regardless of what moves are played, all numbers $1$ to $36$ will appear. We started with $2$ numbers on the board, so the game ends after $34$ moves.




    The result is that




    The game always ends after $34$ moves, after which the first player cannot move and loses.







    share|improve this answer











    $endgroup$




    The numbers $25$ and $36$ are coprime. This means that if we continually replace the largest of the two numbers by the (positive) difference of the two numbers, we are essentially performing the Euclidean algorithm for finding their GCD, and will eventually get a $1$. The sequence is $36$, $25$, $36-25=11$, $25-11=14$, $14-11=3$, $11-3=8$, $8-3=5$, $5-3=2$, $3-2=1$.

    Once there is a $1$ on the board, you can repeatedly subtract it to fill in any gaps and eventually produce every number from $1$ to $36$. This shows that if you have two cooperating players, all number from $1$ to $36$ can be produced.

    But this also happens when the game is played between two non-cooperating players. It is impossible to prevent any of the numbers appearing. If any number in the euclidean sequence is not on the board, then there are still moves available. So eventually $1$ must be produced, and then as long as there are missing numbers between $1$ and $36$, there is at least one move available.
    This means that regardless of what moves are played, all numbers $1$ to $36$ will appear. We started with $2$ numbers on the board, so the game ends after $34$ moves.




    The result is that




    The game always ends after $34$ moves, after which the first player cannot move and loses.








    share|improve this answer














    share|improve this answer



    share|improve this answer








    edited 2 days ago

























    answered 2 days ago









    Jaap ScherphuisJaap Scherphuis

    16.6k12772




    16.6k12772







    • 4




      $begingroup$
      Beat me by a minute, nice one :-)
      $endgroup$
      – Rand al'Thor
      2 days ago












    • 4




      $begingroup$
      Beat me by a minute, nice one :-)
      $endgroup$
      – Rand al'Thor
      2 days ago







    4




    4




    $begingroup$
    Beat me by a minute, nice one :-)
    $endgroup$
    – Rand al'Thor
    2 days ago




    $begingroup$
    Beat me by a minute, nice one :-)
    $endgroup$
    – Rand al'Thor
    2 days ago











    5












    $begingroup$

    The key fact is as follows:




    The only time the game can end is when the numbers are in the form $k,2k,3k,4k,dots,ak$ for some fixed $a$ and $kgeq1$. This is because, given two numbers $m$ and $n$ on the board, we can always apply repeated subtraction between them to reach their GCD, and then from there to reach every multiple of their GCD up to $textmax(m,n)$.




    Therefore this particular game ends when the numbers on the board are




    $1,2,3,4,dots,35,36$. This will take a total of 34 moves, since there are two numbers at the start and a new one is written each time.




    So the conclusion is




    no matter how the game goes, the first player loses, since 34 is even.







    share|improve this answer









    $endgroup$








    • 2




      $begingroup$
      Beat me by about 3 seconds :) Oh, and Jaap beat the two of us as well.
      $endgroup$
      – Arnaud Mortier
      2 days ago
















    5












    $begingroup$

    The key fact is as follows:




    The only time the game can end is when the numbers are in the form $k,2k,3k,4k,dots,ak$ for some fixed $a$ and $kgeq1$. This is because, given two numbers $m$ and $n$ on the board, we can always apply repeated subtraction between them to reach their GCD, and then from there to reach every multiple of their GCD up to $textmax(m,n)$.




    Therefore this particular game ends when the numbers on the board are




    $1,2,3,4,dots,35,36$. This will take a total of 34 moves, since there are two numbers at the start and a new one is written each time.




    So the conclusion is




    no matter how the game goes, the first player loses, since 34 is even.







    share|improve this answer









    $endgroup$








    • 2




      $begingroup$
      Beat me by about 3 seconds :) Oh, and Jaap beat the two of us as well.
      $endgroup$
      – Arnaud Mortier
      2 days ago














    5












    5








    5





    $begingroup$

    The key fact is as follows:




    The only time the game can end is when the numbers are in the form $k,2k,3k,4k,dots,ak$ for some fixed $a$ and $kgeq1$. This is because, given two numbers $m$ and $n$ on the board, we can always apply repeated subtraction between them to reach their GCD, and then from there to reach every multiple of their GCD up to $textmax(m,n)$.




    Therefore this particular game ends when the numbers on the board are




    $1,2,3,4,dots,35,36$. This will take a total of 34 moves, since there are two numbers at the start and a new one is written each time.




    So the conclusion is




    no matter how the game goes, the first player loses, since 34 is even.







    share|improve this answer









    $endgroup$



    The key fact is as follows:




    The only time the game can end is when the numbers are in the form $k,2k,3k,4k,dots,ak$ for some fixed $a$ and $kgeq1$. This is because, given two numbers $m$ and $n$ on the board, we can always apply repeated subtraction between them to reach their GCD, and then from there to reach every multiple of their GCD up to $textmax(m,n)$.




    Therefore this particular game ends when the numbers on the board are




    $1,2,3,4,dots,35,36$. This will take a total of 34 moves, since there are two numbers at the start and a new one is written each time.




    So the conclusion is




    no matter how the game goes, the first player loses, since 34 is even.








    share|improve this answer












    share|improve this answer



    share|improve this answer










    answered 2 days ago









    Rand al'ThorRand al'Thor

    71k14235471




    71k14235471







    • 2




      $begingroup$
      Beat me by about 3 seconds :) Oh, and Jaap beat the two of us as well.
      $endgroup$
      – Arnaud Mortier
      2 days ago













    • 2




      $begingroup$
      Beat me by about 3 seconds :) Oh, and Jaap beat the two of us as well.
      $endgroup$
      – Arnaud Mortier
      2 days ago








    2




    2




    $begingroup$
    Beat me by about 3 seconds :) Oh, and Jaap beat the two of us as well.
    $endgroup$
    – Arnaud Mortier
    2 days ago





    $begingroup$
    Beat me by about 3 seconds :) Oh, and Jaap beat the two of us as well.
    $endgroup$
    – Arnaud Mortier
    2 days ago












    3












    $begingroup$

    Answer:




    The player who plays first will lose, no matter what choices the player make.




    This is because




    The Euclidean algorithm tells you that as long as $1$ (the gcd of $25$ and $36$) is not on the board, there are legal ways to continue the process. Now, from the moment when $1$ does appear on the board, no matter how long it took to get there, every positive number between $1$ and $36$ becomes reachable.




    Therefore




    no matter what path is taken, the amount of steps before the game is over is $34$, one for each integer between $1$ and $36$, excluding the two already on the board at the beginning of the game.







    share|improve this answer









    $endgroup$

















      3












      $begingroup$

      Answer:




      The player who plays first will lose, no matter what choices the player make.




      This is because




      The Euclidean algorithm tells you that as long as $1$ (the gcd of $25$ and $36$) is not on the board, there are legal ways to continue the process. Now, from the moment when $1$ does appear on the board, no matter how long it took to get there, every positive number between $1$ and $36$ becomes reachable.




      Therefore




      no matter what path is taken, the amount of steps before the game is over is $34$, one for each integer between $1$ and $36$, excluding the two already on the board at the beginning of the game.







      share|improve this answer









      $endgroup$















        3












        3








        3





        $begingroup$

        Answer:




        The player who plays first will lose, no matter what choices the player make.




        This is because




        The Euclidean algorithm tells you that as long as $1$ (the gcd of $25$ and $36$) is not on the board, there are legal ways to continue the process. Now, from the moment when $1$ does appear on the board, no matter how long it took to get there, every positive number between $1$ and $36$ becomes reachable.




        Therefore




        no matter what path is taken, the amount of steps before the game is over is $34$, one for each integer between $1$ and $36$, excluding the two already on the board at the beginning of the game.







        share|improve this answer









        $endgroup$



        Answer:




        The player who plays first will lose, no matter what choices the player make.




        This is because




        The Euclidean algorithm tells you that as long as $1$ (the gcd of $25$ and $36$) is not on the board, there are legal ways to continue the process. Now, from the moment when $1$ does appear on the board, no matter how long it took to get there, every positive number between $1$ and $36$ becomes reachable.




        Therefore




        no matter what path is taken, the amount of steps before the game is over is $34$, one for each integer between $1$ and $36$, excluding the two already on the board at the beginning of the game.








        share|improve this answer












        share|improve this answer



        share|improve this answer










        answered 2 days ago









        Arnaud MortierArnaud Mortier

        2,020725




        2,020725




















            all about everything is a new contributor. Be nice, and check out our Code of Conduct.









            draft saved

            draft discarded


















            all about everything is a new contributor. Be nice, and check out our Code of Conduct.












            all about everything is a new contributor. Be nice, and check out our Code of Conduct.











            all about everything is a new contributor. Be nice, and check out our Code of Conduct.














            Thanks for contributing an answer to Puzzling Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid


            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.

            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fpuzzling.stackexchange.com%2fquestions%2f81214%2fwriting-differences-on-a-blackboard%23new-answer', 'question_page');

            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            រឿង រ៉ូមេអូ និង ហ្ស៊ុយលីយេ សង្ខេបរឿង តួអង្គ បញ្ជីណែនាំ

            Crop image to path created in TikZ? Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern)Crop an inserted image?TikZ pictures does not appear in posterImage behind and beyond crop marks?Tikz picture as large as possible on A4 PageTransparency vs image compression dilemmaHow to crop background from image automatically?Image does not cropTikzexternal capturing crop marks when externalizing pgfplots?How to include image path that contains a dollar signCrop image with left size given

            Romeo and Juliet ContentsCharactersSynopsisSourcesDate and textThemes and motifsCriticism and interpretationLegacyScene by sceneSee alsoNotes and referencesSourcesExternal linksNavigation menu"Consumer Price Index (estimate) 1800–"10.2307/28710160037-3222287101610.1093/res/II.5.31910.2307/45967845967810.2307/2869925286992510.1525/jams.1982.35.3.03a00050"Dada Masilo: South African dancer who breaks the rules"10.1093/res/os-XV.57.1610.2307/28680942868094"Sweet Sorrow: Mann-Korman's Romeo and Juliet Closes Sept. 5 at MN's Ordway"the original10.2307/45957745957710.1017/CCOL0521570476.009"Ram Leela box office collections hit massive Rs 100 crore, pulverises prediction"Archived"Broadway Revival of Romeo and Juliet, Starring Orlando Bloom and Condola Rashad, Will Close Dec. 8"Archived10.1075/jhp.7.1.04hon"Wherefore art thou, Romeo? To make us laugh at Navy Pier"the original10.1093/gmo/9781561592630.article.O006772"Ram-leela Review Roundup: Critics Hail Film as Best Adaptation of Romeo and Juliet"Archived10.2307/31946310047-77293194631"Romeo and Juliet get Twitter treatment""Juliet's Nurse by Lois Leveen""Romeo and Juliet: Orlando Bloom's Broadway Debut Released in Theaters for Valentine's Day"Archived"Romeo and Juliet Has No Balcony"10.1093/gmo/9781561592630.article.O00778110.2307/2867423286742310.1076/enst.82.2.115.959510.1080/00138380601042675"A plague o' both your houses: error in GCSE exam paper forces apology""Juliet of the Five O'Clock Shadow, and Other Wonders"10.2307/33912430027-4321339124310.2307/28487440038-7134284874410.2307/29123140149-661129123144728341M"Weekender Guide: Shakespeare on The Drive""balcony"UK public library membership"romeo"UK public library membership10.1017/CCOL9780521844291"Post-Zionist Critique on Israel and the Palestinians Part III: Popular Culture"10.2307/25379071533-86140377-919X2537907"Capulets and Montagues: UK exam board admit mixing names up in Romeo and Juliet paper"Istoria Novellamente Ritrovata di Due Nobili Amanti2027/mdp.390150822329610820-750X"GCSE exam error: Board accidentally rewrites Shakespeare"10.2307/29176390149-66112917639"Exam board apologises after error in English GCSE paper which confused characters in Shakespeare's Romeo and Juliet""From Mariotto and Ganozza to Romeo and Guilietta: Metamorphoses of a Renaissance Tale"10.2307/37323537323510.2307/2867455286745510.2307/28678912867891"10 Questions for Taylor Swift"10.2307/28680922868092"Haymarket Theatre""The Zeffirelli Way: Revealing Talk by Florentine Director""Michael Smuin: 1938-2007 / Prolific dance director had showy career"The Life and Art of Edwin BoothRomeo and JulietRomeo and JulietRomeo and JulietRomeo and JulietEasy Read Romeo and JulietRomeo and Julieteeecb12003684p(data)4099369-3n8211610759dbe00d-a9e2-41a3-b2c1-977dd692899302814385X313670221313670221