Decomposition of product of two Plucker coordinates The Next CEO of Stack OverflowThe topology of open semi-algebraic sets (appl.: totally positive matrices)Characterizing zeros of schur functions over $mathbbR^n$ or $mathbbC^n$Extending the vertex-facet correspondence from Δ to ΘDecomposing polyhedral cones into “direct sums” and a polynomialReal plane cubic curves from points in Gr(3,6) via a certain 6x6 determinantCross-ratio and projective transformationsComparing parametrizations of unipotent radicalHow do I use Walsh-Hadamard matrices to compute Fourier coefficients of a boolean function?Plucker coordinates of flag varietiesChebyshev-like Problem for Plucker Coordinates

Decomposition of product of two Plucker coordinates



The Next CEO of Stack OverflowThe topology of open semi-algebraic sets (appl.: totally positive matrices)Characterizing zeros of schur functions over $mathbbR^n$ or $mathbbC^n$Extending the vertex-facet correspondence from Δ to ΘDecomposing polyhedral cones into “direct sums” and a polynomialReal plane cubic curves from points in Gr(3,6) via a certain 6x6 determinantCross-ratio and projective transformationsComparing parametrizations of unipotent radicalHow do I use Walsh-Hadamard matrices to compute Fourier coefficients of a boolean function?Plucker coordinates of flag varietiesChebyshev-like Problem for Plucker Coordinates










1












$begingroup$


Let $Gr(k,n)$ be the set of all $k$-dimensional subspaces of an $n$-dimensional vector space. Then $Gr(k,n)$ is a projective variety and it has Plucker coordinates $P_i_1, ldots, i_k$ ($i_1<ldots<i_k$) which is the determinant of the matrix $(x_ij)_i in [k], j in i_1, ldots, i_k$. Certain Plucker coordinates satisfy the Plucker relation. For example, for $Gr(2,n)$, $P_12P_34 + P_23P_14-P_13P_24=0$. Therefore $P_13P_24 = P_12P_34 + P_23P_14$ can be viewed as a decomposition of the product of $P_13$ and $P_24$. For $P_12$, $P_34$, we say that their product is irreducible. That is $P_12P_34$ cannot be written as a sum (with two or more terms in the summation, each summand has positive coefficient) of products of Plucker coordinates.



Given two Plucker coordinates $P_i_1, ldots, i_k$, $P_j_1, ldots, j_k$, is there some formula for the decomposition of $P_i_1, ldots, i_k P_j_1, ldots, j_k = sum_T c_T P_T$ (P_T is a product of certain Plucker coordinates, $c_T>0$) in the literature? Thank you very much.










share|cite|improve this question









$endgroup$
















    1












    $begingroup$


    Let $Gr(k,n)$ be the set of all $k$-dimensional subspaces of an $n$-dimensional vector space. Then $Gr(k,n)$ is a projective variety and it has Plucker coordinates $P_i_1, ldots, i_k$ ($i_1<ldots<i_k$) which is the determinant of the matrix $(x_ij)_i in [k], j in i_1, ldots, i_k$. Certain Plucker coordinates satisfy the Plucker relation. For example, for $Gr(2,n)$, $P_12P_34 + P_23P_14-P_13P_24=0$. Therefore $P_13P_24 = P_12P_34 + P_23P_14$ can be viewed as a decomposition of the product of $P_13$ and $P_24$. For $P_12$, $P_34$, we say that their product is irreducible. That is $P_12P_34$ cannot be written as a sum (with two or more terms in the summation, each summand has positive coefficient) of products of Plucker coordinates.



    Given two Plucker coordinates $P_i_1, ldots, i_k$, $P_j_1, ldots, j_k$, is there some formula for the decomposition of $P_i_1, ldots, i_k P_j_1, ldots, j_k = sum_T c_T P_T$ (P_T is a product of certain Plucker coordinates, $c_T>0$) in the literature? Thank you very much.










    share|cite|improve this question









    $endgroup$














      1












      1








      1





      $begingroup$


      Let $Gr(k,n)$ be the set of all $k$-dimensional subspaces of an $n$-dimensional vector space. Then $Gr(k,n)$ is a projective variety and it has Plucker coordinates $P_i_1, ldots, i_k$ ($i_1<ldots<i_k$) which is the determinant of the matrix $(x_ij)_i in [k], j in i_1, ldots, i_k$. Certain Plucker coordinates satisfy the Plucker relation. For example, for $Gr(2,n)$, $P_12P_34 + P_23P_14-P_13P_24=0$. Therefore $P_13P_24 = P_12P_34 + P_23P_14$ can be viewed as a decomposition of the product of $P_13$ and $P_24$. For $P_12$, $P_34$, we say that their product is irreducible. That is $P_12P_34$ cannot be written as a sum (with two or more terms in the summation, each summand has positive coefficient) of products of Plucker coordinates.



      Given two Plucker coordinates $P_i_1, ldots, i_k$, $P_j_1, ldots, j_k$, is there some formula for the decomposition of $P_i_1, ldots, i_k P_j_1, ldots, j_k = sum_T c_T P_T$ (P_T is a product of certain Plucker coordinates, $c_T>0$) in the literature? Thank you very much.










      share|cite|improve this question









      $endgroup$




      Let $Gr(k,n)$ be the set of all $k$-dimensional subspaces of an $n$-dimensional vector space. Then $Gr(k,n)$ is a projective variety and it has Plucker coordinates $P_i_1, ldots, i_k$ ($i_1<ldots<i_k$) which is the determinant of the matrix $(x_ij)_i in [k], j in i_1, ldots, i_k$. Certain Plucker coordinates satisfy the Plucker relation. For example, for $Gr(2,n)$, $P_12P_34 + P_23P_14-P_13P_24=0$. Therefore $P_13P_24 = P_12P_34 + P_23P_14$ can be viewed as a decomposition of the product of $P_13$ and $P_24$. For $P_12$, $P_34$, we say that their product is irreducible. That is $P_12P_34$ cannot be written as a sum (with two or more terms in the summation, each summand has positive coefficient) of products of Plucker coordinates.



      Given two Plucker coordinates $P_i_1, ldots, i_k$, $P_j_1, ldots, j_k$, is there some formula for the decomposition of $P_i_1, ldots, i_k P_j_1, ldots, j_k = sum_T c_T P_T$ (P_T is a product of certain Plucker coordinates, $c_T>0$) in the literature? Thank you very much.







      ag.algebraic-geometry co.combinatorics






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked 2 days ago









      Jianrong LiJianrong Li

      2,53021319




      2,53021319




















          1 Answer
          1






          active

          oldest

          votes


















          6












          $begingroup$

          Your exact question seems a little strange to me because, beyond the 3-term relation, more general Plücker relations will have many terms with both positive and negative signs. So for $k>2$ it is not clear that we can ever do decompositions of the type you're describing. But the question of which subsets of Plücker coordinates are algebraically independent and generate the coordinate ring of the Grassmannian, and how do we write arbitrary elements of the coordinate ring in the corresponding basis, is the beginning of the study of cluster algebras. See e.g. https://arxiv.org/abs/math/0311148.






          share|cite|improve this answer









          $endgroup$













            Your Answer





            StackExchange.ifUsing("editor", function ()
            return StackExchange.using("mathjaxEditing", function ()
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            );
            );
            , "mathjax-editing");

            StackExchange.ready(function()
            var channelOptions =
            tags: "".split(" "),
            id: "504"
            ;
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function()
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled)
            StackExchange.using("snippets", function()
            createEditor();
            );

            else
            createEditor();

            );

            function createEditor()
            StackExchange.prepareEditor(
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader:
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            ,
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            );



            );













            draft saved

            draft discarded


















            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathoverflow.net%2fquestions%2f326748%2fdecomposition-of-product-of-two-plucker-coordinates%23new-answer', 'question_page');

            );

            Post as a guest















            Required, but never shown

























            1 Answer
            1






            active

            oldest

            votes








            1 Answer
            1






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            6












            $begingroup$

            Your exact question seems a little strange to me because, beyond the 3-term relation, more general Plücker relations will have many terms with both positive and negative signs. So for $k>2$ it is not clear that we can ever do decompositions of the type you're describing. But the question of which subsets of Plücker coordinates are algebraically independent and generate the coordinate ring of the Grassmannian, and how do we write arbitrary elements of the coordinate ring in the corresponding basis, is the beginning of the study of cluster algebras. See e.g. https://arxiv.org/abs/math/0311148.






            share|cite|improve this answer









            $endgroup$

















              6












              $begingroup$

              Your exact question seems a little strange to me because, beyond the 3-term relation, more general Plücker relations will have many terms with both positive and negative signs. So for $k>2$ it is not clear that we can ever do decompositions of the type you're describing. But the question of which subsets of Plücker coordinates are algebraically independent and generate the coordinate ring of the Grassmannian, and how do we write arbitrary elements of the coordinate ring in the corresponding basis, is the beginning of the study of cluster algebras. See e.g. https://arxiv.org/abs/math/0311148.






              share|cite|improve this answer









              $endgroup$















                6












                6








                6





                $begingroup$

                Your exact question seems a little strange to me because, beyond the 3-term relation, more general Plücker relations will have many terms with both positive and negative signs. So for $k>2$ it is not clear that we can ever do decompositions of the type you're describing. But the question of which subsets of Plücker coordinates are algebraically independent and generate the coordinate ring of the Grassmannian, and how do we write arbitrary elements of the coordinate ring in the corresponding basis, is the beginning of the study of cluster algebras. See e.g. https://arxiv.org/abs/math/0311148.






                share|cite|improve this answer









                $endgroup$



                Your exact question seems a little strange to me because, beyond the 3-term relation, more general Plücker relations will have many terms with both positive and negative signs. So for $k>2$ it is not clear that we can ever do decompositions of the type you're describing. But the question of which subsets of Plücker coordinates are algebraically independent and generate the coordinate ring of the Grassmannian, and how do we write arbitrary elements of the coordinate ring in the corresponding basis, is the beginning of the study of cluster algebras. See e.g. https://arxiv.org/abs/math/0311148.







                share|cite|improve this answer












                share|cite|improve this answer



                share|cite|improve this answer










                answered 2 days ago









                Sam HopkinsSam Hopkins

                4,96212557




                4,96212557



























                    draft saved

                    draft discarded
















































                    Thanks for contributing an answer to MathOverflow!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid


                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.

                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function ()
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathoverflow.net%2fquestions%2f326748%2fdecomposition-of-product-of-two-plucker-coordinates%23new-answer', 'question_page');

                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    រឿង រ៉ូមេអូ និង ហ្ស៊ុយលីយេ សង្ខេបរឿង តួអង្គ បញ្ជីណែនាំ

                    Crop image to path created in TikZ? Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern)Crop an inserted image?TikZ pictures does not appear in posterImage behind and beyond crop marks?Tikz picture as large as possible on A4 PageTransparency vs image compression dilemmaHow to crop background from image automatically?Image does not cropTikzexternal capturing crop marks when externalizing pgfplots?How to include image path that contains a dollar signCrop image with left size given

                    Romeo and Juliet ContentsCharactersSynopsisSourcesDate and textThemes and motifsCriticism and interpretationLegacyScene by sceneSee alsoNotes and referencesSourcesExternal linksNavigation menu"Consumer Price Index (estimate) 1800–"10.2307/28710160037-3222287101610.1093/res/II.5.31910.2307/45967845967810.2307/2869925286992510.1525/jams.1982.35.3.03a00050"Dada Masilo: South African dancer who breaks the rules"10.1093/res/os-XV.57.1610.2307/28680942868094"Sweet Sorrow: Mann-Korman's Romeo and Juliet Closes Sept. 5 at MN's Ordway"the original10.2307/45957745957710.1017/CCOL0521570476.009"Ram Leela box office collections hit massive Rs 100 crore, pulverises prediction"Archived"Broadway Revival of Romeo and Juliet, Starring Orlando Bloom and Condola Rashad, Will Close Dec. 8"Archived10.1075/jhp.7.1.04hon"Wherefore art thou, Romeo? To make us laugh at Navy Pier"the original10.1093/gmo/9781561592630.article.O006772"Ram-leela Review Roundup: Critics Hail Film as Best Adaptation of Romeo and Juliet"Archived10.2307/31946310047-77293194631"Romeo and Juliet get Twitter treatment""Juliet's Nurse by Lois Leveen""Romeo and Juliet: Orlando Bloom's Broadway Debut Released in Theaters for Valentine's Day"Archived"Romeo and Juliet Has No Balcony"10.1093/gmo/9781561592630.article.O00778110.2307/2867423286742310.1076/enst.82.2.115.959510.1080/00138380601042675"A plague o' both your houses: error in GCSE exam paper forces apology""Juliet of the Five O'Clock Shadow, and Other Wonders"10.2307/33912430027-4321339124310.2307/28487440038-7134284874410.2307/29123140149-661129123144728341M"Weekender Guide: Shakespeare on The Drive""balcony"UK public library membership"romeo"UK public library membership10.1017/CCOL9780521844291"Post-Zionist Critique on Israel and the Palestinians Part III: Popular Culture"10.2307/25379071533-86140377-919X2537907"Capulets and Montagues: UK exam board admit mixing names up in Romeo and Juliet paper"Istoria Novellamente Ritrovata di Due Nobili Amanti2027/mdp.390150822329610820-750X"GCSE exam error: Board accidentally rewrites Shakespeare"10.2307/29176390149-66112917639"Exam board apologises after error in English GCSE paper which confused characters in Shakespeare's Romeo and Juliet""From Mariotto and Ganozza to Romeo and Guilietta: Metamorphoses of a Renaissance Tale"10.2307/37323537323510.2307/2867455286745510.2307/28678912867891"10 Questions for Taylor Swift"10.2307/28680922868092"Haymarket Theatre""The Zeffirelli Way: Revealing Talk by Florentine Director""Michael Smuin: 1938-2007 / Prolific dance director had showy career"The Life and Art of Edwin BoothRomeo and JulietRomeo and JulietRomeo and JulietRomeo and JulietEasy Read Romeo and JulietRomeo and Julieteeecb12003684p(data)4099369-3n8211610759dbe00d-a9e2-41a3-b2c1-977dd692899302814385X313670221313670221