Prove that NP is closed under karp reduction? The 2019 Stack Overflow Developer Survey Results Are In Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern)Space(n) not closed under Karp reductions - what about NTime(n)?Class P is closed under rotation?Prove or disprove that $NL$ is closed under polynomial many-one reductions$mathbfNC_2$ is closed under log-space reductionOn Karp reductionwhen can I know if a class (complexity) is closed under reduction (cook/karp)Check if class $PSPACE$ is closed under polyonomially space reductionIs NPSPACE also closed under polynomial-time reduction and under log-space reduction?Prove PSPACE is closed under complement?Prove PSPACE is closed under union?
Did the new image of black hole confirm the general theory of relativity?
Do warforged have souls?
Can a flute soloist sit?
Variable with quotation marks "$()"
What information about me do stores get via my credit card?
How to create a folder symlink that has a different name?
Can the DM override racial traits?
Is this wall load bearing? Blueprints and photos attached
Pretty sure I'm over complicating my loops but unsure how to simplify
Am I ethically obligated to go into work on an off day if the reason is sudden?
How to substitute curly brackets with round brackets in a grid of list
What's the point in a preamp?
Why not take a picture of a closer black hole?
How to determine omitted units in a publication
Why can I use a list index as an indexing variable in a for loop?
Can withdrawing asylum be illegal?
What happens to a Warlock's expended Spell Slots when they gain a Level?
Why don't hard Brexiteers insist on a hard border to prevent illegal immigration after Brexit?
Is it ok to offer lower paid work as a trial period before negotiating for a full-time job?
Word to describe a time interval
TDS update packages don't remove unneeded items
Make it rain characters
How do you keep chess fun when your opponent constantly beats you?
What to do when moving next to a bird sanctuary with a loosely-domesticated cat?
Prove that NP is closed under karp reduction?
The 2019 Stack Overflow Developer Survey Results Are In
Announcing the arrival of Valued Associate #679: Cesar Manara
Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern)Space(n) not closed under Karp reductions - what about NTime(n)?Class P is closed under rotation?Prove or disprove that $NL$ is closed under polynomial many-one reductions$mathbfNC_2$ is closed under log-space reductionOn Karp reductionwhen can I know if a class (complexity) is closed under reduction (cook/karp)Check if class $PSPACE$ is closed under polyonomially space reductionIs NPSPACE also closed under polynomial-time reduction and under log-space reduction?Prove PSPACE is closed under complement?Prove PSPACE is closed under union?
$begingroup$
A complexity class $mathbbC$ is said to be closed under a reduction if:
$A$ reduces to $B$ and $B in mathbbC$ $implies$ $A in mathbbC$
How would you go about proving this if $mathbbC = NP$ and the reduction to be the karp reduction? i.e.
Prove that if $A$ karp reduces to $B$ and $B in NP$ $implies$ $A in NP$
complexity-theory
New contributor
$endgroup$
add a comment |
$begingroup$
A complexity class $mathbbC$ is said to be closed under a reduction if:
$A$ reduces to $B$ and $B in mathbbC$ $implies$ $A in mathbbC$
How would you go about proving this if $mathbbC = NP$ and the reduction to be the karp reduction? i.e.
Prove that if $A$ karp reduces to $B$ and $B in NP$ $implies$ $A in NP$
complexity-theory
New contributor
$endgroup$
4
$begingroup$
Try using the definitions.
$endgroup$
– Yuval Filmus
Apr 6 at 19:09
$begingroup$
@YuvalFilmus thanks for the advice, this helped me figure it out!
$endgroup$
– Ankit Bahl
Apr 6 at 20:06
add a comment |
$begingroup$
A complexity class $mathbbC$ is said to be closed under a reduction if:
$A$ reduces to $B$ and $B in mathbbC$ $implies$ $A in mathbbC$
How would you go about proving this if $mathbbC = NP$ and the reduction to be the karp reduction? i.e.
Prove that if $A$ karp reduces to $B$ and $B in NP$ $implies$ $A in NP$
complexity-theory
New contributor
$endgroup$
A complexity class $mathbbC$ is said to be closed under a reduction if:
$A$ reduces to $B$ and $B in mathbbC$ $implies$ $A in mathbbC$
How would you go about proving this if $mathbbC = NP$ and the reduction to be the karp reduction? i.e.
Prove that if $A$ karp reduces to $B$ and $B in NP$ $implies$ $A in NP$
complexity-theory
complexity-theory
New contributor
New contributor
New contributor
asked Apr 6 at 19:02
Ankit BahlAnkit Bahl
965
965
New contributor
New contributor
4
$begingroup$
Try using the definitions.
$endgroup$
– Yuval Filmus
Apr 6 at 19:09
$begingroup$
@YuvalFilmus thanks for the advice, this helped me figure it out!
$endgroup$
– Ankit Bahl
Apr 6 at 20:06
add a comment |
4
$begingroup$
Try using the definitions.
$endgroup$
– Yuval Filmus
Apr 6 at 19:09
$begingroup$
@YuvalFilmus thanks for the advice, this helped me figure it out!
$endgroup$
– Ankit Bahl
Apr 6 at 20:06
4
4
$begingroup$
Try using the definitions.
$endgroup$
– Yuval Filmus
Apr 6 at 19:09
$begingroup$
Try using the definitions.
$endgroup$
– Yuval Filmus
Apr 6 at 19:09
$begingroup$
@YuvalFilmus thanks for the advice, this helped me figure it out!
$endgroup$
– Ankit Bahl
Apr 6 at 20:06
$begingroup$
@YuvalFilmus thanks for the advice, this helped me figure it out!
$endgroup$
– Ankit Bahl
Apr 6 at 20:06
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
I was able to figure it out. In case anyone (mans in ECE 406) was wondering:
$B in NP$ means that there exists a non-deterministic polynomial time algorithm for $B$. Let's call that $b(i)$, where $i$ is the input to $B$.
$A$ karp reducing to $B implies$ that there exists a function $m$ such that $m$ can take an input $i$ to $A$ and map it to some input $m(i)$ for $B$, and if an instance of $i$ is true for $A$ then $m(i)$ is true for B (and same for false case),
Therefore, an algorithm for $A$ can be made as follows:
$A (i)$
- Take input $i$ and apply $m$ to yield $m(i)$
- Apply $b$ with input $m(i)$
This yields an output for $A$. Since both $m$ and $b$ are non-deterministic polynomial time, this algorithm is non-deterministic polynomial time. Therefore $A$ must be in NP.
New contributor
$endgroup$
add a comment |
Your Answer
StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "419"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);
else
createEditor();
);
function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: false,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: null,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);
);
Ankit Bahl is a new contributor. Be nice, and check out our Code of Conduct.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fcs.stackexchange.com%2fquestions%2f106574%2fprove-that-np-is-closed-under-karp-reduction%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
I was able to figure it out. In case anyone (mans in ECE 406) was wondering:
$B in NP$ means that there exists a non-deterministic polynomial time algorithm for $B$. Let's call that $b(i)$, where $i$ is the input to $B$.
$A$ karp reducing to $B implies$ that there exists a function $m$ such that $m$ can take an input $i$ to $A$ and map it to some input $m(i)$ for $B$, and if an instance of $i$ is true for $A$ then $m(i)$ is true for B (and same for false case),
Therefore, an algorithm for $A$ can be made as follows:
$A (i)$
- Take input $i$ and apply $m$ to yield $m(i)$
- Apply $b$ with input $m(i)$
This yields an output for $A$. Since both $m$ and $b$ are non-deterministic polynomial time, this algorithm is non-deterministic polynomial time. Therefore $A$ must be in NP.
New contributor
$endgroup$
add a comment |
$begingroup$
I was able to figure it out. In case anyone (mans in ECE 406) was wondering:
$B in NP$ means that there exists a non-deterministic polynomial time algorithm for $B$. Let's call that $b(i)$, where $i$ is the input to $B$.
$A$ karp reducing to $B implies$ that there exists a function $m$ such that $m$ can take an input $i$ to $A$ and map it to some input $m(i)$ for $B$, and if an instance of $i$ is true for $A$ then $m(i)$ is true for B (and same for false case),
Therefore, an algorithm for $A$ can be made as follows:
$A (i)$
- Take input $i$ and apply $m$ to yield $m(i)$
- Apply $b$ with input $m(i)$
This yields an output for $A$. Since both $m$ and $b$ are non-deterministic polynomial time, this algorithm is non-deterministic polynomial time. Therefore $A$ must be in NP.
New contributor
$endgroup$
add a comment |
$begingroup$
I was able to figure it out. In case anyone (mans in ECE 406) was wondering:
$B in NP$ means that there exists a non-deterministic polynomial time algorithm for $B$. Let's call that $b(i)$, where $i$ is the input to $B$.
$A$ karp reducing to $B implies$ that there exists a function $m$ such that $m$ can take an input $i$ to $A$ and map it to some input $m(i)$ for $B$, and if an instance of $i$ is true for $A$ then $m(i)$ is true for B (and same for false case),
Therefore, an algorithm for $A$ can be made as follows:
$A (i)$
- Take input $i$ and apply $m$ to yield $m(i)$
- Apply $b$ with input $m(i)$
This yields an output for $A$. Since both $m$ and $b$ are non-deterministic polynomial time, this algorithm is non-deterministic polynomial time. Therefore $A$ must be in NP.
New contributor
$endgroup$
I was able to figure it out. In case anyone (mans in ECE 406) was wondering:
$B in NP$ means that there exists a non-deterministic polynomial time algorithm for $B$. Let's call that $b(i)$, where $i$ is the input to $B$.
$A$ karp reducing to $B implies$ that there exists a function $m$ such that $m$ can take an input $i$ to $A$ and map it to some input $m(i)$ for $B$, and if an instance of $i$ is true for $A$ then $m(i)$ is true for B (and same for false case),
Therefore, an algorithm for $A$ can be made as follows:
$A (i)$
- Take input $i$ and apply $m$ to yield $m(i)$
- Apply $b$ with input $m(i)$
This yields an output for $A$. Since both $m$ and $b$ are non-deterministic polynomial time, this algorithm is non-deterministic polynomial time. Therefore $A$ must be in NP.
New contributor
edited Apr 9 at 12:18
New contributor
answered Apr 6 at 20:05
Ankit BahlAnkit Bahl
965
965
New contributor
New contributor
add a comment |
add a comment |
Ankit Bahl is a new contributor. Be nice, and check out our Code of Conduct.
Ankit Bahl is a new contributor. Be nice, and check out our Code of Conduct.
Ankit Bahl is a new contributor. Be nice, and check out our Code of Conduct.
Ankit Bahl is a new contributor. Be nice, and check out our Code of Conduct.
Thanks for contributing an answer to Computer Science Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fcs.stackexchange.com%2fquestions%2f106574%2fprove-that-np-is-closed-under-karp-reduction%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
4
$begingroup$
Try using the definitions.
$endgroup$
– Yuval Filmus
Apr 6 at 19:09
$begingroup$
@YuvalFilmus thanks for the advice, this helped me figure it out!
$endgroup$
– Ankit Bahl
Apr 6 at 20:06