is the intersection of subgroups a subgroup of each subgroup The 2019 Stack Overflow Developer Survey Results Are In Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern)A group with no proper non-trivial subgroupsSubgroups that are isomorphic to each other, and contain a common element are the same subgroupIf a group has no maximal subgroups then all elements are non-generators? Frattini subgroup characterizationLet $P$, $Q$ be two Sylow p-subgroups of $G$, is it true that $N_P(Q)=Qcap P$?Subgroups of $G=(mathbbZ_12,+)$join of pronormal subgroupsProperty of normally embedded subgroupsParity of order of intersection of cyclic and noncyclic subgroupsListing elements of the subgroups and generatorsIntersection of two subgroups
Why are PDP-7-style microprogrammed instructions out of vogue?
how can a perfect fourth interval be considered either consonant or dissonant?
Python - Fishing Simulator
How to politely respond to generic emails requesting a PhD/job in my lab? Without wasting too much time
What information about me do stores get via my credit card?
Intergalactic human space ship encounters another ship, character gets shunted off beyond known universe, reality starts collapsing
Is every episode of "Where are my Pants?" identical?
Is it ok to offer lower paid work as a trial period before negotiating for a full-time job?
60's-70's movie: home appliances revolting against the owners
Was credit for the black hole image misappropriated?
Is it ethical to upload a automatically generated paper to a non peer-reviewed site as part of a larger research?
Why doesn't a hydraulic lever violate conservation of energy?
Does Parliament need to approve the new Brexit delay to 31 October 2019?
"... to apply for a visa" or "... and applied for a visa"?
Single author papers against my advisor's will?
What can I do if neighbor is blocking my solar panels intentionally?
Did the UK government pay "millions and millions of dollars" to try to snag Julian Assange?
Sort list of array linked objects by keys and values
How to determine omitted units in a publication
What is the padding with red substance inside of steak packaging?
Huge performance difference of the command find with and without using %M option to show permissions
Sub-subscripts in strings cause different spacings than subscripts
Would an alien lifeform be able to achieve space travel if lacking in vision?
Do I have Disadvantage attacking with an off-hand weapon?
is the intersection of subgroups a subgroup of each subgroup
The 2019 Stack Overflow Developer Survey Results Are In
Announcing the arrival of Valued Associate #679: Cesar Manara
Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern)A group with no proper non-trivial subgroupsSubgroups that are isomorphic to each other, and contain a common element are the same subgroupIf a group has no maximal subgroups then all elements are non-generators? Frattini subgroup characterizationLet $P$, $Q$ be two Sylow p-subgroups of $G$, is it true that $N_P(Q)=Qcap P$?Subgroups of $G=(mathbbZ_12,+)$join of pronormal subgroupsProperty of normally embedded subgroupsParity of order of intersection of cyclic and noncyclic subgroupsListing elements of the subgroups and generatorsIntersection of two subgroups
$begingroup$
Suppose $G$ is a group, take $H,K$ as subgroups of $G$ so $H,Kleqslant G$. I know that $Hcap Kleqslant G$ but is it the case that $Hcap Kleqslant H$ and $Hcap Kleqslant K$?
I am guessing this does not hold but why?
Also I tried with the case that $H=langle g rangle,K=langle h rangle$ where $g$ and $h$ are the elements in $G$ ($langle h rangle$ means the minimum subgroup that contains the element $h$ if you haven't seen this notation before). I used the subspace test and I think that $Hcap Kleqslant H$ and $Hcap Kleqslant K$ hold unless I make a mistake somewhere.
Much thanks in advance!
abstract-algebra group-theory
$endgroup$
add a comment |
$begingroup$
Suppose $G$ is a group, take $H,K$ as subgroups of $G$ so $H,Kleqslant G$. I know that $Hcap Kleqslant G$ but is it the case that $Hcap Kleqslant H$ and $Hcap Kleqslant K$?
I am guessing this does not hold but why?
Also I tried with the case that $H=langle g rangle,K=langle h rangle$ where $g$ and $h$ are the elements in $G$ ($langle h rangle$ means the minimum subgroup that contains the element $h$ if you haven't seen this notation before). I used the subspace test and I think that $Hcap Kleqslant H$ and $Hcap Kleqslant K$ hold unless I make a mistake somewhere.
Much thanks in advance!
abstract-algebra group-theory
$endgroup$
$begingroup$
A subgroup is just a subset which behaves as a group under the same operation. The intersection of two subsets is a subset of both. The operation does never change, so subgroups behave like subsets in these aspects.
$endgroup$
– M. Winter
Apr 7 at 12:11
add a comment |
$begingroup$
Suppose $G$ is a group, take $H,K$ as subgroups of $G$ so $H,Kleqslant G$. I know that $Hcap Kleqslant G$ but is it the case that $Hcap Kleqslant H$ and $Hcap Kleqslant K$?
I am guessing this does not hold but why?
Also I tried with the case that $H=langle g rangle,K=langle h rangle$ where $g$ and $h$ are the elements in $G$ ($langle h rangle$ means the minimum subgroup that contains the element $h$ if you haven't seen this notation before). I used the subspace test and I think that $Hcap Kleqslant H$ and $Hcap Kleqslant K$ hold unless I make a mistake somewhere.
Much thanks in advance!
abstract-algebra group-theory
$endgroup$
Suppose $G$ is a group, take $H,K$ as subgroups of $G$ so $H,Kleqslant G$. I know that $Hcap Kleqslant G$ but is it the case that $Hcap Kleqslant H$ and $Hcap Kleqslant K$?
I am guessing this does not hold but why?
Also I tried with the case that $H=langle g rangle,K=langle h rangle$ where $g$ and $h$ are the elements in $G$ ($langle h rangle$ means the minimum subgroup that contains the element $h$ if you haven't seen this notation before). I used the subspace test and I think that $Hcap Kleqslant H$ and $Hcap Kleqslant K$ hold unless I make a mistake somewhere.
Much thanks in advance!
abstract-algebra group-theory
abstract-algebra group-theory
edited Apr 7 at 5:43
Shaun
10.5k113687
10.5k113687
asked Apr 7 at 0:21
JustWanderingJustWandering
793
793
$begingroup$
A subgroup is just a subset which behaves as a group under the same operation. The intersection of two subsets is a subset of both. The operation does never change, so subgroups behave like subsets in these aspects.
$endgroup$
– M. Winter
Apr 7 at 12:11
add a comment |
$begingroup$
A subgroup is just a subset which behaves as a group under the same operation. The intersection of two subsets is a subset of both. The operation does never change, so subgroups behave like subsets in these aspects.
$endgroup$
– M. Winter
Apr 7 at 12:11
$begingroup$
A subgroup is just a subset which behaves as a group under the same operation. The intersection of two subsets is a subset of both. The operation does never change, so subgroups behave like subsets in these aspects.
$endgroup$
– M. Winter
Apr 7 at 12:11
$begingroup$
A subgroup is just a subset which behaves as a group under the same operation. The intersection of two subsets is a subset of both. The operation does never change, so subgroups behave like subsets in these aspects.
$endgroup$
– M. Winter
Apr 7 at 12:11
add a comment |
3 Answers
3
active
oldest
votes
$begingroup$
It is indeed true that $H cap K$ is a subgroup of both $H$ and $K$. For the sake of clarity, we recall the definition of a subgroup below:
Definition. Let $(G, odot)$ be group with identity $e$ and let $H$ be a subset of $G$. We say that $H$ is a subgroup of $G$ if each of the following hold:
$e in H$,
- if $h_1,h_2 in H$ then $h_1 odot h_2 in H$,
- for all $h in H$, its inverse element $h^-1$ with respect to $odot$ is also in $H$.
These axioms make it so that $(H, odot)$ is a group in its own right with the very same group operation $odot$ and identity $e$. We also point out that these properties have less to do with the set $G$ than the operation $odot$ that $G$ comes equipped with.
Now, let $G$ be a group and let $H,K$ be subgroups of $G$. You have already verified that $H cap K$ is a subgroup of $G$. Why must it also be a subgroup of $H$ (and $K$)? First, it's clear that $H cap K subseteq H, H cap K subseteq K$ and that $H cap K ni e$. Moreover, because $H cap K$ is a subgroup of $G$, it is satisfies properties 2. and 3. above. Thus, by replacing $G$ with $H$ or $K$ in the definition above, it's immediate that $H cap K$ is a subgroup of $H$ (and $K$) as well!
In short, as long as $H$ is a subset of a group $G$ and $H$ satisfies the properties listed above, it will be a subgroup of $G$.
$endgroup$
add a comment |
$begingroup$
The subgroup test is:
$H$ is a subgroup of $G$ if and only if for each $x,yin H$ we've $xy^-1in H$.
Applied to a collection of subgroups $H_s$, let $x,yinbigcap_sH_s$ be a pair of elements. Then $x,yin H_s$ for all $S$ and since $H_s<G$ then $xy^-1in H_s$ for every index $s$, so $xy^-1inbigcap_sH_s$, hence $bigcap_sH_s$ is a subgroup too.
$endgroup$
add a comment |
$begingroup$
The intersection of two (or any quantity of) subgroups is always a subgroup of all the intersecting subgroups. Indeed, this is a particular case of the following general remark.
Remark. A subgroup $H leqslant G$ is also a subgroup of any subgroup $K leqslant G$ containing $H$. More precisesly, if $G$ is a group and $H subseteq K leqslant G$ then:
beginequation
H text is a subgroup of G
Leftrightarrow
H text is a subgroup of K ,.
endequation
Recall that a subset $H subseteq G$ is a subgroup of $(G,cdot)$ if and only if $H$ is a group with (the restriction to $H$ of) the operation in $G$. But, if $H subseteq K leqslant G$, then the restriction of $G$ to $H$ is the same as the restriction of $K$ to $H$. Hence, the condition for $H leqslant G$ is exactly the same as the condition $H leqslant K$.
Your question just corresponds to the case: $H cap K subseteq H,K leqslant G$.
$endgroup$
add a comment |
Your Answer
StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "69"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);
else
createEditor();
);
function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);
);
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3177593%2fis-the-intersection-of-subgroups-a-subgroup-of-each-subgroup%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
It is indeed true that $H cap K$ is a subgroup of both $H$ and $K$. For the sake of clarity, we recall the definition of a subgroup below:
Definition. Let $(G, odot)$ be group with identity $e$ and let $H$ be a subset of $G$. We say that $H$ is a subgroup of $G$ if each of the following hold:
$e in H$,
- if $h_1,h_2 in H$ then $h_1 odot h_2 in H$,
- for all $h in H$, its inverse element $h^-1$ with respect to $odot$ is also in $H$.
These axioms make it so that $(H, odot)$ is a group in its own right with the very same group operation $odot$ and identity $e$. We also point out that these properties have less to do with the set $G$ than the operation $odot$ that $G$ comes equipped with.
Now, let $G$ be a group and let $H,K$ be subgroups of $G$. You have already verified that $H cap K$ is a subgroup of $G$. Why must it also be a subgroup of $H$ (and $K$)? First, it's clear that $H cap K subseteq H, H cap K subseteq K$ and that $H cap K ni e$. Moreover, because $H cap K$ is a subgroup of $G$, it is satisfies properties 2. and 3. above. Thus, by replacing $G$ with $H$ or $K$ in the definition above, it's immediate that $H cap K$ is a subgroup of $H$ (and $K$) as well!
In short, as long as $H$ is a subset of a group $G$ and $H$ satisfies the properties listed above, it will be a subgroup of $G$.
$endgroup$
add a comment |
$begingroup$
It is indeed true that $H cap K$ is a subgroup of both $H$ and $K$. For the sake of clarity, we recall the definition of a subgroup below:
Definition. Let $(G, odot)$ be group with identity $e$ and let $H$ be a subset of $G$. We say that $H$ is a subgroup of $G$ if each of the following hold:
$e in H$,
- if $h_1,h_2 in H$ then $h_1 odot h_2 in H$,
- for all $h in H$, its inverse element $h^-1$ with respect to $odot$ is also in $H$.
These axioms make it so that $(H, odot)$ is a group in its own right with the very same group operation $odot$ and identity $e$. We also point out that these properties have less to do with the set $G$ than the operation $odot$ that $G$ comes equipped with.
Now, let $G$ be a group and let $H,K$ be subgroups of $G$. You have already verified that $H cap K$ is a subgroup of $G$. Why must it also be a subgroup of $H$ (and $K$)? First, it's clear that $H cap K subseteq H, H cap K subseteq K$ and that $H cap K ni e$. Moreover, because $H cap K$ is a subgroup of $G$, it is satisfies properties 2. and 3. above. Thus, by replacing $G$ with $H$ or $K$ in the definition above, it's immediate that $H cap K$ is a subgroup of $H$ (and $K$) as well!
In short, as long as $H$ is a subset of a group $G$ and $H$ satisfies the properties listed above, it will be a subgroup of $G$.
$endgroup$
add a comment |
$begingroup$
It is indeed true that $H cap K$ is a subgroup of both $H$ and $K$. For the sake of clarity, we recall the definition of a subgroup below:
Definition. Let $(G, odot)$ be group with identity $e$ and let $H$ be a subset of $G$. We say that $H$ is a subgroup of $G$ if each of the following hold:
$e in H$,
- if $h_1,h_2 in H$ then $h_1 odot h_2 in H$,
- for all $h in H$, its inverse element $h^-1$ with respect to $odot$ is also in $H$.
These axioms make it so that $(H, odot)$ is a group in its own right with the very same group operation $odot$ and identity $e$. We also point out that these properties have less to do with the set $G$ than the operation $odot$ that $G$ comes equipped with.
Now, let $G$ be a group and let $H,K$ be subgroups of $G$. You have already verified that $H cap K$ is a subgroup of $G$. Why must it also be a subgroup of $H$ (and $K$)? First, it's clear that $H cap K subseteq H, H cap K subseteq K$ and that $H cap K ni e$. Moreover, because $H cap K$ is a subgroup of $G$, it is satisfies properties 2. and 3. above. Thus, by replacing $G$ with $H$ or $K$ in the definition above, it's immediate that $H cap K$ is a subgroup of $H$ (and $K$) as well!
In short, as long as $H$ is a subset of a group $G$ and $H$ satisfies the properties listed above, it will be a subgroup of $G$.
$endgroup$
It is indeed true that $H cap K$ is a subgroup of both $H$ and $K$. For the sake of clarity, we recall the definition of a subgroup below:
Definition. Let $(G, odot)$ be group with identity $e$ and let $H$ be a subset of $G$. We say that $H$ is a subgroup of $G$ if each of the following hold:
$e in H$,
- if $h_1,h_2 in H$ then $h_1 odot h_2 in H$,
- for all $h in H$, its inverse element $h^-1$ with respect to $odot$ is also in $H$.
These axioms make it so that $(H, odot)$ is a group in its own right with the very same group operation $odot$ and identity $e$. We also point out that these properties have less to do with the set $G$ than the operation $odot$ that $G$ comes equipped with.
Now, let $G$ be a group and let $H,K$ be subgroups of $G$. You have already verified that $H cap K$ is a subgroup of $G$. Why must it also be a subgroup of $H$ (and $K$)? First, it's clear that $H cap K subseteq H, H cap K subseteq K$ and that $H cap K ni e$. Moreover, because $H cap K$ is a subgroup of $G$, it is satisfies properties 2. and 3. above. Thus, by replacing $G$ with $H$ or $K$ in the definition above, it's immediate that $H cap K$ is a subgroup of $H$ (and $K$) as well!
In short, as long as $H$ is a subset of a group $G$ and $H$ satisfies the properties listed above, it will be a subgroup of $G$.
edited Apr 7 at 16:19
answered Apr 7 at 0:27
rolandcyprolandcyp
1
1
add a comment |
add a comment |
$begingroup$
The subgroup test is:
$H$ is a subgroup of $G$ if and only if for each $x,yin H$ we've $xy^-1in H$.
Applied to a collection of subgroups $H_s$, let $x,yinbigcap_sH_s$ be a pair of elements. Then $x,yin H_s$ for all $S$ and since $H_s<G$ then $xy^-1in H_s$ for every index $s$, so $xy^-1inbigcap_sH_s$, hence $bigcap_sH_s$ is a subgroup too.
$endgroup$
add a comment |
$begingroup$
The subgroup test is:
$H$ is a subgroup of $G$ if and only if for each $x,yin H$ we've $xy^-1in H$.
Applied to a collection of subgroups $H_s$, let $x,yinbigcap_sH_s$ be a pair of elements. Then $x,yin H_s$ for all $S$ and since $H_s<G$ then $xy^-1in H_s$ for every index $s$, so $xy^-1inbigcap_sH_s$, hence $bigcap_sH_s$ is a subgroup too.
$endgroup$
add a comment |
$begingroup$
The subgroup test is:
$H$ is a subgroup of $G$ if and only if for each $x,yin H$ we've $xy^-1in H$.
Applied to a collection of subgroups $H_s$, let $x,yinbigcap_sH_s$ be a pair of elements. Then $x,yin H_s$ for all $S$ and since $H_s<G$ then $xy^-1in H_s$ for every index $s$, so $xy^-1inbigcap_sH_s$, hence $bigcap_sH_s$ is a subgroup too.
$endgroup$
The subgroup test is:
$H$ is a subgroup of $G$ if and only if for each $x,yin H$ we've $xy^-1in H$.
Applied to a collection of subgroups $H_s$, let $x,yinbigcap_sH_s$ be a pair of elements. Then $x,yin H_s$ for all $S$ and since $H_s<G$ then $xy^-1in H_s$ for every index $s$, so $xy^-1inbigcap_sH_s$, hence $bigcap_sH_s$ is a subgroup too.
answered Apr 7 at 2:45
janmarqzjanmarqz
6,29241630
6,29241630
add a comment |
add a comment |
$begingroup$
The intersection of two (or any quantity of) subgroups is always a subgroup of all the intersecting subgroups. Indeed, this is a particular case of the following general remark.
Remark. A subgroup $H leqslant G$ is also a subgroup of any subgroup $K leqslant G$ containing $H$. More precisesly, if $G$ is a group and $H subseteq K leqslant G$ then:
beginequation
H text is a subgroup of G
Leftrightarrow
H text is a subgroup of K ,.
endequation
Recall that a subset $H subseteq G$ is a subgroup of $(G,cdot)$ if and only if $H$ is a group with (the restriction to $H$ of) the operation in $G$. But, if $H subseteq K leqslant G$, then the restriction of $G$ to $H$ is the same as the restriction of $K$ to $H$. Hence, the condition for $H leqslant G$ is exactly the same as the condition $H leqslant K$.
Your question just corresponds to the case: $H cap K subseteq H,K leqslant G$.
$endgroup$
add a comment |
$begingroup$
The intersection of two (or any quantity of) subgroups is always a subgroup of all the intersecting subgroups. Indeed, this is a particular case of the following general remark.
Remark. A subgroup $H leqslant G$ is also a subgroup of any subgroup $K leqslant G$ containing $H$. More precisesly, if $G$ is a group and $H subseteq K leqslant G$ then:
beginequation
H text is a subgroup of G
Leftrightarrow
H text is a subgroup of K ,.
endequation
Recall that a subset $H subseteq G$ is a subgroup of $(G,cdot)$ if and only if $H$ is a group with (the restriction to $H$ of) the operation in $G$. But, if $H subseteq K leqslant G$, then the restriction of $G$ to $H$ is the same as the restriction of $K$ to $H$. Hence, the condition for $H leqslant G$ is exactly the same as the condition $H leqslant K$.
Your question just corresponds to the case: $H cap K subseteq H,K leqslant G$.
$endgroup$
add a comment |
$begingroup$
The intersection of two (or any quantity of) subgroups is always a subgroup of all the intersecting subgroups. Indeed, this is a particular case of the following general remark.
Remark. A subgroup $H leqslant G$ is also a subgroup of any subgroup $K leqslant G$ containing $H$. More precisesly, if $G$ is a group and $H subseteq K leqslant G$ then:
beginequation
H text is a subgroup of G
Leftrightarrow
H text is a subgroup of K ,.
endequation
Recall that a subset $H subseteq G$ is a subgroup of $(G,cdot)$ if and only if $H$ is a group with (the restriction to $H$ of) the operation in $G$. But, if $H subseteq K leqslant G$, then the restriction of $G$ to $H$ is the same as the restriction of $K$ to $H$. Hence, the condition for $H leqslant G$ is exactly the same as the condition $H leqslant K$.
Your question just corresponds to the case: $H cap K subseteq H,K leqslant G$.
$endgroup$
The intersection of two (or any quantity of) subgroups is always a subgroup of all the intersecting subgroups. Indeed, this is a particular case of the following general remark.
Remark. A subgroup $H leqslant G$ is also a subgroup of any subgroup $K leqslant G$ containing $H$. More precisesly, if $G$ is a group and $H subseteq K leqslant G$ then:
beginequation
H text is a subgroup of G
Leftrightarrow
H text is a subgroup of K ,.
endequation
Recall that a subset $H subseteq G$ is a subgroup of $(G,cdot)$ if and only if $H$ is a group with (the restriction to $H$ of) the operation in $G$. But, if $H subseteq K leqslant G$, then the restriction of $G$ to $H$ is the same as the restriction of $K$ to $H$. Hence, the condition for $H leqslant G$ is exactly the same as the condition $H leqslant K$.
Your question just corresponds to the case: $H cap K subseteq H,K leqslant G$.
answered Apr 7 at 11:49
suitangisuitangi
45928
45928
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3177593%2fis-the-intersection-of-subgroups-a-subgroup-of-each-subgroup%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
A subgroup is just a subset which behaves as a group under the same operation. The intersection of two subsets is a subset of both. The operation does never change, so subgroups behave like subsets in these aspects.
$endgroup$
– M. Winter
Apr 7 at 12:11