Facing a paradox: Earnshaw's theorem in one dimension The 2019 Stack Overflow Developer Survey Results Are InDoes this example contradict Earnshaw's theorem in one dimension?Classify equilibrium points and find bifurcation points of a non-linear dynamic systemEarnshaw's theorem and springsEarnshaw's theorem for extended conducting bodiesPotential due to charge over infinite grounded plane conductor using the method of imagesRelation between electric field and dipole momentEarnshaw's theorm and Effective potentialDielectric liquid sucked up between two cylinders with a voltage differenceElectrostatics: Induced Boundary Dipole LayerWhy do we assume simply connected domains and continuously differentiable fields in electromagnetism theory?Does this example contradict Earnshaw's theorem in one dimension?
What do the Banks children have against barley water?
What does Linus Torvalds mean when he says that Git "never ever" tracks a file?
Landlord wants to switch my lease to a "Land contract" to "get back at the city"
Which Sci-Fi work first showed weapon of galactic-scale mass destruction?
Idiomatic way to prevent slicing?
What are the motivations for publishing new editions of an existing textbook, beyond new discoveries in a field?
A poker game description that does not feel gimmicky
Why do UK politicians seemingly ignore opinion polls on Brexit?
What is a mixture ratio of propellant?
The difference between dialogue marks
How to deal with fear of taking dependencies
How to answer pointed "are you quitting" questioning when I don't want them to suspect
Inline version of a function returns different value then non-inline version
Time travel alters history but people keep saying nothing's changed
Should I write numbers in words or as numerals when there are multiple next to each other?
How to create dashed lines/arrows in Illustrator
Lethal sonic weapons
Where does the "burst of radiance" from Holy Weapon originate?
Does duplicating a spell with Wish count as casting that spell?
aging parents with no investments
What is the use of option -o in the useradd command?
Does light intensity oscillate really fast since it is a wave?
How can I create a character who can assume the widest possible range of creature sizes?
Could JWST stay at L2 "forever"?
Facing a paradox: Earnshaw's theorem in one dimension
The 2019 Stack Overflow Developer Survey Results Are InDoes this example contradict Earnshaw's theorem in one dimension?Classify equilibrium points and find bifurcation points of a non-linear dynamic systemEarnshaw's theorem and springsEarnshaw's theorem for extended conducting bodiesPotential due to charge over infinite grounded plane conductor using the method of imagesRelation between electric field and dipole momentEarnshaw's theorm and Effective potentialDielectric liquid sucked up between two cylinders with a voltage differenceElectrostatics: Induced Boundary Dipole LayerWhy do we assume simply connected domains and continuously differentiable fields in electromagnetism theory?Does this example contradict Earnshaw's theorem in one dimension?
$begingroup$
Consider a one-dimensional situation on a straight line (say, $x$-axis). Let a charge of magnitude $q$ be located at $x=x_0$, the potential satisfies the Poisson's equation $$fracd^2Vdx^2=-fracrho(x)epsilon_0=-fracqdelta(x-x_0)epsilon_0.$$ If $q>0$, $V^primeprime(x_0)<0$, and if $q<0$, $V^primeprime(x_0)>0$. Therefore, it appears that the potential $V$ does have a minimum at $x=x_0$, for $q<0$. Does this imply that $x=x_0$ is a point of stable equilibrium? I must be missing something because this appears to violate Earnshaw's theorem (or it doesn't)?
electrostatics mathematical-physics potential classical-electrodynamics equilibrium
$endgroup$
add a comment |
$begingroup$
Consider a one-dimensional situation on a straight line (say, $x$-axis). Let a charge of magnitude $q$ be located at $x=x_0$, the potential satisfies the Poisson's equation $$fracd^2Vdx^2=-fracrho(x)epsilon_0=-fracqdelta(x-x_0)epsilon_0.$$ If $q>0$, $V^primeprime(x_0)<0$, and if $q<0$, $V^primeprime(x_0)>0$. Therefore, it appears that the potential $V$ does have a minimum at $x=x_0$, for $q<0$. Does this imply that $x=x_0$ is a point of stable equilibrium? I must be missing something because this appears to violate Earnshaw's theorem (or it doesn't)?
electrostatics mathematical-physics potential classical-electrodynamics equilibrium
$endgroup$
add a comment |
$begingroup$
Consider a one-dimensional situation on a straight line (say, $x$-axis). Let a charge of magnitude $q$ be located at $x=x_0$, the potential satisfies the Poisson's equation $$fracd^2Vdx^2=-fracrho(x)epsilon_0=-fracqdelta(x-x_0)epsilon_0.$$ If $q>0$, $V^primeprime(x_0)<0$, and if $q<0$, $V^primeprime(x_0)>0$. Therefore, it appears that the potential $V$ does have a minimum at $x=x_0$, for $q<0$. Does this imply that $x=x_0$ is a point of stable equilibrium? I must be missing something because this appears to violate Earnshaw's theorem (or it doesn't)?
electrostatics mathematical-physics potential classical-electrodynamics equilibrium
$endgroup$
Consider a one-dimensional situation on a straight line (say, $x$-axis). Let a charge of magnitude $q$ be located at $x=x_0$, the potential satisfies the Poisson's equation $$fracd^2Vdx^2=-fracrho(x)epsilon_0=-fracqdelta(x-x_0)epsilon_0.$$ If $q>0$, $V^primeprime(x_0)<0$, and if $q<0$, $V^primeprime(x_0)>0$. Therefore, it appears that the potential $V$ does have a minimum at $x=x_0$, for $q<0$. Does this imply that $x=x_0$ is a point of stable equilibrium? I must be missing something because this appears to violate Earnshaw's theorem (or it doesn't)?
electrostatics mathematical-physics potential classical-electrodynamics equilibrium
electrostatics mathematical-physics potential classical-electrodynamics equilibrium
edited Apr 4 at 16:44
Aaron Stevens
15k42453
15k42453
asked Apr 4 at 13:53
SRSSRS
6,781434125
6,781434125
add a comment |
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
Your example does not contradict Earnshaw's theorem for electrostatics, because it rules out stable equilibrium in a region without charge, possibly containing fields made by charges outside that region. Here you're doing the exact opposite, looking at the only point in your situation with charge.
$endgroup$
$begingroup$
Yes. I meant Earnshaw's theorem. Thanks. Does it mean that there must be an Earnshaw's theorem for Newtonian gravitation? Because in a massless region, again one has $V^primeprime(x)=0$?
$endgroup$
– SRS
Apr 4 at 14:57
$begingroup$
@SRS Yes, that's true.
$endgroup$
– knzhou
Apr 4 at 14:58
$begingroup$
I am not yet totally comfortable with this. If you have a charge at some point $x=x_0$, is it not correct to look at the behaviour of the potential at that point? @knzhou
$endgroup$
– SRS
Apr 4 at 15:37
$begingroup$
@SRS The potential at a point charge is not defined (or you could say infinite)
$endgroup$
– Aaron Stevens
Apr 4 at 16:33
$begingroup$
I have to think more about it and I'll get back.
$endgroup$
– SRS
Apr 4 at 16:37
|
show 1 more comment
$begingroup$
So technically $V''(x_0)$ doesn't have an actual value, since $delta(x-x_0)toinfty$ as $xto x_0$. However, if you understand the Dirac delta distribution to be a limit of a function whose peak "gets narrower" with its integral remaining constant, then this is fine and you could say there is a minimum at $x_0$ for $q<0$
This can be more easily understood by just thinking about the motion of a positive charge in this potential. It will move towards the negative charge, i.e. towards the minimum of the potential.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function ()
return StackExchange.using("mathjaxEditing", function ()
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
);
);
, "mathjax-editing");
StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "151"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);
else
createEditor();
);
function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: false,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: null,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);
);
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fphysics.stackexchange.com%2fquestions%2f470522%2ffacing-a-paradox-earnshaws-theorem-in-one-dimension%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Your example does not contradict Earnshaw's theorem for electrostatics, because it rules out stable equilibrium in a region without charge, possibly containing fields made by charges outside that region. Here you're doing the exact opposite, looking at the only point in your situation with charge.
$endgroup$
$begingroup$
Yes. I meant Earnshaw's theorem. Thanks. Does it mean that there must be an Earnshaw's theorem for Newtonian gravitation? Because in a massless region, again one has $V^primeprime(x)=0$?
$endgroup$
– SRS
Apr 4 at 14:57
$begingroup$
@SRS Yes, that's true.
$endgroup$
– knzhou
Apr 4 at 14:58
$begingroup$
I am not yet totally comfortable with this. If you have a charge at some point $x=x_0$, is it not correct to look at the behaviour of the potential at that point? @knzhou
$endgroup$
– SRS
Apr 4 at 15:37
$begingroup$
@SRS The potential at a point charge is not defined (or you could say infinite)
$endgroup$
– Aaron Stevens
Apr 4 at 16:33
$begingroup$
I have to think more about it and I'll get back.
$endgroup$
– SRS
Apr 4 at 16:37
|
show 1 more comment
$begingroup$
Your example does not contradict Earnshaw's theorem for electrostatics, because it rules out stable equilibrium in a region without charge, possibly containing fields made by charges outside that region. Here you're doing the exact opposite, looking at the only point in your situation with charge.
$endgroup$
$begingroup$
Yes. I meant Earnshaw's theorem. Thanks. Does it mean that there must be an Earnshaw's theorem for Newtonian gravitation? Because in a massless region, again one has $V^primeprime(x)=0$?
$endgroup$
– SRS
Apr 4 at 14:57
$begingroup$
@SRS Yes, that's true.
$endgroup$
– knzhou
Apr 4 at 14:58
$begingroup$
I am not yet totally comfortable with this. If you have a charge at some point $x=x_0$, is it not correct to look at the behaviour of the potential at that point? @knzhou
$endgroup$
– SRS
Apr 4 at 15:37
$begingroup$
@SRS The potential at a point charge is not defined (or you could say infinite)
$endgroup$
– Aaron Stevens
Apr 4 at 16:33
$begingroup$
I have to think more about it and I'll get back.
$endgroup$
– SRS
Apr 4 at 16:37
|
show 1 more comment
$begingroup$
Your example does not contradict Earnshaw's theorem for electrostatics, because it rules out stable equilibrium in a region without charge, possibly containing fields made by charges outside that region. Here you're doing the exact opposite, looking at the only point in your situation with charge.
$endgroup$
Your example does not contradict Earnshaw's theorem for electrostatics, because it rules out stable equilibrium in a region without charge, possibly containing fields made by charges outside that region. Here you're doing the exact opposite, looking at the only point in your situation with charge.
edited Apr 4 at 16:44
Aaron Stevens
15k42453
15k42453
answered Apr 4 at 13:58
knzhouknzhou
46.8k11126224
46.8k11126224
$begingroup$
Yes. I meant Earnshaw's theorem. Thanks. Does it mean that there must be an Earnshaw's theorem for Newtonian gravitation? Because in a massless region, again one has $V^primeprime(x)=0$?
$endgroup$
– SRS
Apr 4 at 14:57
$begingroup$
@SRS Yes, that's true.
$endgroup$
– knzhou
Apr 4 at 14:58
$begingroup$
I am not yet totally comfortable with this. If you have a charge at some point $x=x_0$, is it not correct to look at the behaviour of the potential at that point? @knzhou
$endgroup$
– SRS
Apr 4 at 15:37
$begingroup$
@SRS The potential at a point charge is not defined (or you could say infinite)
$endgroup$
– Aaron Stevens
Apr 4 at 16:33
$begingroup$
I have to think more about it and I'll get back.
$endgroup$
– SRS
Apr 4 at 16:37
|
show 1 more comment
$begingroup$
Yes. I meant Earnshaw's theorem. Thanks. Does it mean that there must be an Earnshaw's theorem for Newtonian gravitation? Because in a massless region, again one has $V^primeprime(x)=0$?
$endgroup$
– SRS
Apr 4 at 14:57
$begingroup$
@SRS Yes, that's true.
$endgroup$
– knzhou
Apr 4 at 14:58
$begingroup$
I am not yet totally comfortable with this. If you have a charge at some point $x=x_0$, is it not correct to look at the behaviour of the potential at that point? @knzhou
$endgroup$
– SRS
Apr 4 at 15:37
$begingroup$
@SRS The potential at a point charge is not defined (or you could say infinite)
$endgroup$
– Aaron Stevens
Apr 4 at 16:33
$begingroup$
I have to think more about it and I'll get back.
$endgroup$
– SRS
Apr 4 at 16:37
$begingroup$
Yes. I meant Earnshaw's theorem. Thanks. Does it mean that there must be an Earnshaw's theorem for Newtonian gravitation? Because in a massless region, again one has $V^primeprime(x)=0$?
$endgroup$
– SRS
Apr 4 at 14:57
$begingroup$
Yes. I meant Earnshaw's theorem. Thanks. Does it mean that there must be an Earnshaw's theorem for Newtonian gravitation? Because in a massless region, again one has $V^primeprime(x)=0$?
$endgroup$
– SRS
Apr 4 at 14:57
$begingroup$
@SRS Yes, that's true.
$endgroup$
– knzhou
Apr 4 at 14:58
$begingroup$
@SRS Yes, that's true.
$endgroup$
– knzhou
Apr 4 at 14:58
$begingroup$
I am not yet totally comfortable with this. If you have a charge at some point $x=x_0$, is it not correct to look at the behaviour of the potential at that point? @knzhou
$endgroup$
– SRS
Apr 4 at 15:37
$begingroup$
I am not yet totally comfortable with this. If you have a charge at some point $x=x_0$, is it not correct to look at the behaviour of the potential at that point? @knzhou
$endgroup$
– SRS
Apr 4 at 15:37
$begingroup$
@SRS The potential at a point charge is not defined (or you could say infinite)
$endgroup$
– Aaron Stevens
Apr 4 at 16:33
$begingroup$
@SRS The potential at a point charge is not defined (or you could say infinite)
$endgroup$
– Aaron Stevens
Apr 4 at 16:33
$begingroup$
I have to think more about it and I'll get back.
$endgroup$
– SRS
Apr 4 at 16:37
$begingroup$
I have to think more about it and I'll get back.
$endgroup$
– SRS
Apr 4 at 16:37
|
show 1 more comment
$begingroup$
So technically $V''(x_0)$ doesn't have an actual value, since $delta(x-x_0)toinfty$ as $xto x_0$. However, if you understand the Dirac delta distribution to be a limit of a function whose peak "gets narrower" with its integral remaining constant, then this is fine and you could say there is a minimum at $x_0$ for $q<0$
This can be more easily understood by just thinking about the motion of a positive charge in this potential. It will move towards the negative charge, i.e. towards the minimum of the potential.
$endgroup$
add a comment |
$begingroup$
So technically $V''(x_0)$ doesn't have an actual value, since $delta(x-x_0)toinfty$ as $xto x_0$. However, if you understand the Dirac delta distribution to be a limit of a function whose peak "gets narrower" with its integral remaining constant, then this is fine and you could say there is a minimum at $x_0$ for $q<0$
This can be more easily understood by just thinking about the motion of a positive charge in this potential. It will move towards the negative charge, i.e. towards the minimum of the potential.
$endgroup$
add a comment |
$begingroup$
So technically $V''(x_0)$ doesn't have an actual value, since $delta(x-x_0)toinfty$ as $xto x_0$. However, if you understand the Dirac delta distribution to be a limit of a function whose peak "gets narrower" with its integral remaining constant, then this is fine and you could say there is a minimum at $x_0$ for $q<0$
This can be more easily understood by just thinking about the motion of a positive charge in this potential. It will move towards the negative charge, i.e. towards the minimum of the potential.
$endgroup$
So technically $V''(x_0)$ doesn't have an actual value, since $delta(x-x_0)toinfty$ as $xto x_0$. However, if you understand the Dirac delta distribution to be a limit of a function whose peak "gets narrower" with its integral remaining constant, then this is fine and you could say there is a minimum at $x_0$ for $q<0$
This can be more easily understood by just thinking about the motion of a positive charge in this potential. It will move towards the negative charge, i.e. towards the minimum of the potential.
answered Apr 4 at 13:59
Aaron StevensAaron Stevens
15k42453
15k42453
add a comment |
add a comment |
Thanks for contributing an answer to Physics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fphysics.stackexchange.com%2fquestions%2f470522%2ffacing-a-paradox-earnshaws-theorem-in-one-dimension%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown