Continuity at a point in terms of closure The 2019 Stack Overflow Developer Survey Results Are In Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern)Set Closure Union and IntersectionContinuity of a function through adherence of subsetsConvex set with empty interior is nowhere dense?Is preimage of closure equal to closure of preimage under continuous topological maps?How to show the logical equivalence of the following two definitions of continuity in a topological space?Given $A subseteq X$ in the discrete and the trivial topology, find closure of $A$Show two notions of dense are equivalentEquivalent definitions of continuity at a pointAbout continuity and clousureEquivalent definition of irreducible topological subspace.
How to grep and cut numbers from a file and sum them
Can a novice safely splice in wire to lengthen 5V charging cable?
how can a perfect fourth interval be considered either consonant or dissonant?
How does this infinite series simplify to an integral?
How did the audience guess the pentatonic scale in Bobby McFerrin's presentation?
Finding the path in a graph from A to B then back to A with a minimum of shared edges
Would it be possible to rearrange a dragon's flight muscle to somewhat circumvent the square-cube law?
Why does the Event Horizon Telescope (EHT) not include telescopes from Africa, Asia or Australia?
Would an alien lifeform be able to achieve space travel if lacking in vision?
Am I ethically obligated to go into work on an off day if the reason is sudden?
What do you call a plan that's an alternative plan in case your initial plan fails?
How to stretch delimiters to envolve matrices inside of a kbordermatrix?
Change bounding box of math glyphs in LuaTeX
Arduino Pro Micro - switch off LEDs
system() function string length limit
Make it rain characters
Semisimplicity of the category of coherent sheaves?
How do you keep chess fun when your opponent constantly beats you?
Hopping to infinity along a string of digits
Windows 10: How to Lock (not sleep) laptop on lid close?
Why is superheterodyning better than direct conversion?
Do working physicists consider Newtonian mechanics to be "falsified"?
Why did all the guest students take carriages to the Yule Ball?
Do warforged have souls?
Continuity at a point in terms of closure
The 2019 Stack Overflow Developer Survey Results Are In
Announcing the arrival of Valued Associate #679: Cesar Manara
Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern)Set Closure Union and IntersectionContinuity of a function through adherence of subsetsConvex set with empty interior is nowhere dense?Is preimage of closure equal to closure of preimage under continuous topological maps?How to show the logical equivalence of the following two definitions of continuity in a topological space?Given $A subseteq X$ in the discrete and the trivial topology, find closure of $A$Show two notions of dense are equivalentEquivalent definitions of continuity at a pointAbout continuity and clousureEquivalent definition of irreducible topological subspace.
$begingroup$
If $X$ and $Y$ are topological spaces, for $f:Xto Y$ to be continuous at $x_0in X$ it is necessary that $Asubseteq X land x_0inoverlineA implies f(x_0)inoverlinef(A)$.
I was wondering whether it is also sufficient. A proof or counterexample would be much appreciated!
Proof (necessity): Let $V$ be a neighborhood of $f(x_0)$. Since $f$ is continuous, $f^-1(V)$ is a neighborhood of $x_0$ in $X$. Since $x_0inoverlineA$, we have $Acap f^-1(V)neqvarnothing$. Let $xin Acap f^-1(V)$. Then $f(x)in f(A)cap V$, so that $f(A)cap Vneqvarnothing$; since this holds for any neighborhood $V$ of $f(x_0)$, we have $f(x_0)inoverlinef(A)$.
general-topology continuity
$endgroup$
add a comment |
$begingroup$
If $X$ and $Y$ are topological spaces, for $f:Xto Y$ to be continuous at $x_0in X$ it is necessary that $Asubseteq X land x_0inoverlineA implies f(x_0)inoverlinef(A)$.
I was wondering whether it is also sufficient. A proof or counterexample would be much appreciated!
Proof (necessity): Let $V$ be a neighborhood of $f(x_0)$. Since $f$ is continuous, $f^-1(V)$ is a neighborhood of $x_0$ in $X$. Since $x_0inoverlineA$, we have $Acap f^-1(V)neqvarnothing$. Let $xin Acap f^-1(V)$. Then $f(x)in f(A)cap V$, so that $f(A)cap Vneqvarnothing$; since this holds for any neighborhood $V$ of $f(x_0)$, we have $f(x_0)inoverlinef(A)$.
general-topology continuity
$endgroup$
add a comment |
$begingroup$
If $X$ and $Y$ are topological spaces, for $f:Xto Y$ to be continuous at $x_0in X$ it is necessary that $Asubseteq X land x_0inoverlineA implies f(x_0)inoverlinef(A)$.
I was wondering whether it is also sufficient. A proof or counterexample would be much appreciated!
Proof (necessity): Let $V$ be a neighborhood of $f(x_0)$. Since $f$ is continuous, $f^-1(V)$ is a neighborhood of $x_0$ in $X$. Since $x_0inoverlineA$, we have $Acap f^-1(V)neqvarnothing$. Let $xin Acap f^-1(V)$. Then $f(x)in f(A)cap V$, so that $f(A)cap Vneqvarnothing$; since this holds for any neighborhood $V$ of $f(x_0)$, we have $f(x_0)inoverlinef(A)$.
general-topology continuity
$endgroup$
If $X$ and $Y$ are topological spaces, for $f:Xto Y$ to be continuous at $x_0in X$ it is necessary that $Asubseteq X land x_0inoverlineA implies f(x_0)inoverlinef(A)$.
I was wondering whether it is also sufficient. A proof or counterexample would be much appreciated!
Proof (necessity): Let $V$ be a neighborhood of $f(x_0)$. Since $f$ is continuous, $f^-1(V)$ is a neighborhood of $x_0$ in $X$. Since $x_0inoverlineA$, we have $Acap f^-1(V)neqvarnothing$. Let $xin Acap f^-1(V)$. Then $f(x)in f(A)cap V$, so that $f(A)cap Vneqvarnothing$; since this holds for any neighborhood $V$ of $f(x_0)$, we have $f(x_0)inoverlinef(A)$.
general-topology continuity
general-topology continuity
asked Apr 7 at 16:29
BlondCaféBlondCafé
364
364
add a comment |
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
Let $Vsubset Y$ be an open such that $f(x_0)in V$. If $x_0 in overlinef^-1(Ysetminus V)$, then $f(x_o)in overlinef(f^-1(Ysetminus V))subset overlineYsetminus V= Ysetminus V$, a contradiction, so $x_0 notin overlinef^-1(Ysetminus V)$. Then, if $U = Xsetminus overlinef^-1(Ysetminus V)$ is an open in $X$ such that $x_0in U$, and $f(U)subset V$, so $f$ is continuous in $x_0$.
$endgroup$
add a comment |
$begingroup$
It's also sufficient: let $y=f(x_0)$ and $y in V$, $V$ open in $Y$.
We want to find (for continuity at $x_0$) find some open neighbourhood $U$ of $x_0$ such that $f[U] subseteq V$.
Suppose that this would fail, then for every neighbourhood $U$ of $x_0$ we would have $f[U] nsubseteq V$, or equivalently $U cap f^-1[Ysetminus V] neq emptyset$.
It follows that then $x_0 in overlinef^-1[Ysetminus V]$ and so the assumption on $f$ would imply that $y=f(x_0) in overlinef[f^-1[Ysetminus V]]$. But $f[f^-1[B]] subseteq B$ for any $B$ so we'd deduce that $y in overlineYsetminus V = Ysetminus V$ which is nonsense. So contradiction and such a $U$ must exist.
$endgroup$
add a comment |
Your Answer
StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "69"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);
else
createEditor();
);
function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);
);
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3178435%2fcontinuity-at-a-point-in-terms-of-closure%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Let $Vsubset Y$ be an open such that $f(x_0)in V$. If $x_0 in overlinef^-1(Ysetminus V)$, then $f(x_o)in overlinef(f^-1(Ysetminus V))subset overlineYsetminus V= Ysetminus V$, a contradiction, so $x_0 notin overlinef^-1(Ysetminus V)$. Then, if $U = Xsetminus overlinef^-1(Ysetminus V)$ is an open in $X$ such that $x_0in U$, and $f(U)subset V$, so $f$ is continuous in $x_0$.
$endgroup$
add a comment |
$begingroup$
Let $Vsubset Y$ be an open such that $f(x_0)in V$. If $x_0 in overlinef^-1(Ysetminus V)$, then $f(x_o)in overlinef(f^-1(Ysetminus V))subset overlineYsetminus V= Ysetminus V$, a contradiction, so $x_0 notin overlinef^-1(Ysetminus V)$. Then, if $U = Xsetminus overlinef^-1(Ysetminus V)$ is an open in $X$ such that $x_0in U$, and $f(U)subset V$, so $f$ is continuous in $x_0$.
$endgroup$
add a comment |
$begingroup$
Let $Vsubset Y$ be an open such that $f(x_0)in V$. If $x_0 in overlinef^-1(Ysetminus V)$, then $f(x_o)in overlinef(f^-1(Ysetminus V))subset overlineYsetminus V= Ysetminus V$, a contradiction, so $x_0 notin overlinef^-1(Ysetminus V)$. Then, if $U = Xsetminus overlinef^-1(Ysetminus V)$ is an open in $X$ such that $x_0in U$, and $f(U)subset V$, so $f$ is continuous in $x_0$.
$endgroup$
Let $Vsubset Y$ be an open such that $f(x_0)in V$. If $x_0 in overlinef^-1(Ysetminus V)$, then $f(x_o)in overlinef(f^-1(Ysetminus V))subset overlineYsetminus V= Ysetminus V$, a contradiction, so $x_0 notin overlinef^-1(Ysetminus V)$. Then, if $U = Xsetminus overlinef^-1(Ysetminus V)$ is an open in $X$ such that $x_0in U$, and $f(U)subset V$, so $f$ is continuous in $x_0$.
answered Apr 7 at 17:06
guchiheguchihe
21919
21919
add a comment |
add a comment |
$begingroup$
It's also sufficient: let $y=f(x_0)$ and $y in V$, $V$ open in $Y$.
We want to find (for continuity at $x_0$) find some open neighbourhood $U$ of $x_0$ such that $f[U] subseteq V$.
Suppose that this would fail, then for every neighbourhood $U$ of $x_0$ we would have $f[U] nsubseteq V$, or equivalently $U cap f^-1[Ysetminus V] neq emptyset$.
It follows that then $x_0 in overlinef^-1[Ysetminus V]$ and so the assumption on $f$ would imply that $y=f(x_0) in overlinef[f^-1[Ysetminus V]]$. But $f[f^-1[B]] subseteq B$ for any $B$ so we'd deduce that $y in overlineYsetminus V = Ysetminus V$ which is nonsense. So contradiction and such a $U$ must exist.
$endgroup$
add a comment |
$begingroup$
It's also sufficient: let $y=f(x_0)$ and $y in V$, $V$ open in $Y$.
We want to find (for continuity at $x_0$) find some open neighbourhood $U$ of $x_0$ such that $f[U] subseteq V$.
Suppose that this would fail, then for every neighbourhood $U$ of $x_0$ we would have $f[U] nsubseteq V$, or equivalently $U cap f^-1[Ysetminus V] neq emptyset$.
It follows that then $x_0 in overlinef^-1[Ysetminus V]$ and so the assumption on $f$ would imply that $y=f(x_0) in overlinef[f^-1[Ysetminus V]]$. But $f[f^-1[B]] subseteq B$ for any $B$ so we'd deduce that $y in overlineYsetminus V = Ysetminus V$ which is nonsense. So contradiction and such a $U$ must exist.
$endgroup$
add a comment |
$begingroup$
It's also sufficient: let $y=f(x_0)$ and $y in V$, $V$ open in $Y$.
We want to find (for continuity at $x_0$) find some open neighbourhood $U$ of $x_0$ such that $f[U] subseteq V$.
Suppose that this would fail, then for every neighbourhood $U$ of $x_0$ we would have $f[U] nsubseteq V$, or equivalently $U cap f^-1[Ysetminus V] neq emptyset$.
It follows that then $x_0 in overlinef^-1[Ysetminus V]$ and so the assumption on $f$ would imply that $y=f(x_0) in overlinef[f^-1[Ysetminus V]]$. But $f[f^-1[B]] subseteq B$ for any $B$ so we'd deduce that $y in overlineYsetminus V = Ysetminus V$ which is nonsense. So contradiction and such a $U$ must exist.
$endgroup$
It's also sufficient: let $y=f(x_0)$ and $y in V$, $V$ open in $Y$.
We want to find (for continuity at $x_0$) find some open neighbourhood $U$ of $x_0$ such that $f[U] subseteq V$.
Suppose that this would fail, then for every neighbourhood $U$ of $x_0$ we would have $f[U] nsubseteq V$, or equivalently $U cap f^-1[Ysetminus V] neq emptyset$.
It follows that then $x_0 in overlinef^-1[Ysetminus V]$ and so the assumption on $f$ would imply that $y=f(x_0) in overlinef[f^-1[Ysetminus V]]$. But $f[f^-1[B]] subseteq B$ for any $B$ so we'd deduce that $y in overlineYsetminus V = Ysetminus V$ which is nonsense. So contradiction and such a $U$ must exist.
answered Apr 7 at 17:07
Henno BrandsmaHenno Brandsma
116k349127
116k349127
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3178435%2fcontinuity-at-a-point-in-terms-of-closure%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown