Would a galaxy be visible from outside, but nearby? The Next CEO of Stack OverflowWhat does the sky look like to human eyes from orbit?At what distance could you see andromeda with the naked eye?Why are galactic centers always brighter than the edges?Distance away from earth to see it as a full diskHow would a very nearby supernova shockwave and remnants affect the Earth?How long would it take for a galaxy to collapse without dark matter?Correlation between large-scale galaxy structure and CMB fluctuations?Observationally distinguishing a galaxy of antimatter from a galaxy of matterCosmic Microwave Background seen from a hypothetical foreign Galaxy?Why does dark matter form halos?

How to write a definition with variants?

Rotate a column

How to get from Geneva Airport to Metabief, Doubs, France by public transport?

Why didn't Khan get resurrected in the Genesis Explosion?

Is there a way to save my career from absolute disaster?

The exact meaning of 'Mom made me a sandwich'

How I can get glyphs from a fraktur font and use them as identifiers?

How is this set of matrices closed under multiplication?

Yu-Gi-Oh cards in Python 3

Is it possible to use a NPN BJT as switch, from single power source?

Does increasing your ability score affect your main stat?

Grabbing quick drinks

Why, when going from special to general relativity, do we just replace partial derivatives with covariant derivatives?

Can MTA send mail via a relay without being told so?

Do I need to write [sic] when a number is less than 10 but isn't written out?

Calculator final project in Python

Is micro rebar a better way to reinforce concrete than rebar?

A small doubt about the dominated convergence theorem

Can this equation be simplified further?

Won the lottery - how do I keep the money?

When you upcast Blindness/Deafness, do all targets suffer the same effect?

I believe this to be a fraud - hired, then asked to cash check and send cash as Bitcoin

Where do students learn to solve polynomial equations these days?

How do I align (1) and (2)?



Would a galaxy be visible from outside, but nearby?



The Next CEO of Stack OverflowWhat does the sky look like to human eyes from orbit?At what distance could you see andromeda with the naked eye?Why are galactic centers always brighter than the edges?Distance away from earth to see it as a full diskHow would a very nearby supernova shockwave and remnants affect the Earth?How long would it take for a galaxy to collapse without dark matter?Correlation between large-scale galaxy structure and CMB fluctuations?Observationally distinguishing a galaxy of antimatter from a galaxy of matterCosmic Microwave Background seen from a hypothetical foreign Galaxy?Why does dark matter form halos?










18












$begingroup$


We all know the typical sci-fi image of a guy standing on the ship deck and able to see a full galaxy. If you somehow were able to stand a few lightyears away from a galaxy would you be able to see it in full, as in the image below?



enter image description here










share|cite|improve this question











$endgroup$







  • 4




    $begingroup$
    I always thought this was a protostar or early solar system.
    $endgroup$
    – Burgi
    yesterday






  • 1




    $begingroup$
    Do you mean whether the disk would be too faint to see because of the brightness of the center, or whether the size would fit in the field of view?
    $endgroup$
    – stackzebra
    yesterday










  • $begingroup$
    @Burgi yes, until now I realize that is indeed a protostar, tbh I was a child when I watched that episode and looked a galaxy to me. But I have been wrong.
    $endgroup$
    – eli.rodriguez
    yesterday










  • $begingroup$
    It might have been "tweaked" in the special editions
    $endgroup$
    – Burgi
    yesterday






  • 1




    $begingroup$
    @Burgi, the canon is inconsistent.
    $endgroup$
    – Harry Johnston
    yesterday















18












$begingroup$


We all know the typical sci-fi image of a guy standing on the ship deck and able to see a full galaxy. If you somehow were able to stand a few lightyears away from a galaxy would you be able to see it in full, as in the image below?



enter image description here










share|cite|improve this question











$endgroup$







  • 4




    $begingroup$
    I always thought this was a protostar or early solar system.
    $endgroup$
    – Burgi
    yesterday






  • 1




    $begingroup$
    Do you mean whether the disk would be too faint to see because of the brightness of the center, or whether the size would fit in the field of view?
    $endgroup$
    – stackzebra
    yesterday










  • $begingroup$
    @Burgi yes, until now I realize that is indeed a protostar, tbh I was a child when I watched that episode and looked a galaxy to me. But I have been wrong.
    $endgroup$
    – eli.rodriguez
    yesterday










  • $begingroup$
    It might have been "tweaked" in the special editions
    $endgroup$
    – Burgi
    yesterday






  • 1




    $begingroup$
    @Burgi, the canon is inconsistent.
    $endgroup$
    – Harry Johnston
    yesterday













18












18








18


3



$begingroup$


We all know the typical sci-fi image of a guy standing on the ship deck and able to see a full galaxy. If you somehow were able to stand a few lightyears away from a galaxy would you be able to see it in full, as in the image below?



enter image description here










share|cite|improve this question











$endgroup$




We all know the typical sci-fi image of a guy standing on the ship deck and able to see a full galaxy. If you somehow were able to stand a few lightyears away from a galaxy would you be able to see it in full, as in the image below?



enter image description here







visible-light astronomy estimation galaxies






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited yesterday









Kyle Oman

15.3k955111




15.3k955111










asked 2 days ago









eli.rodriguezeli.rodriguez

14417




14417







  • 4




    $begingroup$
    I always thought this was a protostar or early solar system.
    $endgroup$
    – Burgi
    yesterday






  • 1




    $begingroup$
    Do you mean whether the disk would be too faint to see because of the brightness of the center, or whether the size would fit in the field of view?
    $endgroup$
    – stackzebra
    yesterday










  • $begingroup$
    @Burgi yes, until now I realize that is indeed a protostar, tbh I was a child when I watched that episode and looked a galaxy to me. But I have been wrong.
    $endgroup$
    – eli.rodriguez
    yesterday










  • $begingroup$
    It might have been "tweaked" in the special editions
    $endgroup$
    – Burgi
    yesterday






  • 1




    $begingroup$
    @Burgi, the canon is inconsistent.
    $endgroup$
    – Harry Johnston
    yesterday












  • 4




    $begingroup$
    I always thought this was a protostar or early solar system.
    $endgroup$
    – Burgi
    yesterday






  • 1




    $begingroup$
    Do you mean whether the disk would be too faint to see because of the brightness of the center, or whether the size would fit in the field of view?
    $endgroup$
    – stackzebra
    yesterday










  • $begingroup$
    @Burgi yes, until now I realize that is indeed a protostar, tbh I was a child when I watched that episode and looked a galaxy to me. But I have been wrong.
    $endgroup$
    – eli.rodriguez
    yesterday










  • $begingroup$
    It might have been "tweaked" in the special editions
    $endgroup$
    – Burgi
    yesterday






  • 1




    $begingroup$
    @Burgi, the canon is inconsistent.
    $endgroup$
    – Harry Johnston
    yesterday







4




4




$begingroup$
I always thought this was a protostar or early solar system.
$endgroup$
– Burgi
yesterday




$begingroup$
I always thought this was a protostar or early solar system.
$endgroup$
– Burgi
yesterday




1




1




$begingroup$
Do you mean whether the disk would be too faint to see because of the brightness of the center, or whether the size would fit in the field of view?
$endgroup$
– stackzebra
yesterday




$begingroup$
Do you mean whether the disk would be too faint to see because of the brightness of the center, or whether the size would fit in the field of view?
$endgroup$
– stackzebra
yesterday












$begingroup$
@Burgi yes, until now I realize that is indeed a protostar, tbh I was a child when I watched that episode and looked a galaxy to me. But I have been wrong.
$endgroup$
– eli.rodriguez
yesterday




$begingroup$
@Burgi yes, until now I realize that is indeed a protostar, tbh I was a child when I watched that episode and looked a galaxy to me. But I have been wrong.
$endgroup$
– eli.rodriguez
yesterday












$begingroup$
It might have been "tweaked" in the special editions
$endgroup$
– Burgi
yesterday




$begingroup$
It might have been "tweaked" in the special editions
$endgroup$
– Burgi
yesterday




1




1




$begingroup$
@Burgi, the canon is inconsistent.
$endgroup$
– Harry Johnston
yesterday




$begingroup$
@Burgi, the canon is inconsistent.
$endgroup$
– Harry Johnston
yesterday










3 Answers
3






active

oldest

votes


















19












$begingroup$

I am very deliberately not illustrating this answer with an image, because essentially any photographic image will misrepresent what you can see in the sky with the naked eye.



The surface brightness, that is the light per unit angular area, of extended objects is independent of distance$^1$. This is because the angle subtended by an object is proportional to the square of its distance, and so is the amount of light reaching an observer.



In other words, a galaxy looks about the same at any distance: it gets bigger or smaller, but its surface brightness (and therefore contrast with the background sky) doesn't change. This breaks down once you get close enough to pick out the individual stars, but with the naked eye you need to be just about inside the galaxy for that to happen$^2$.



Now the answer should be obvious: you would never see a galaxy looking like the one in your Star Wars screenshot. Rather, it would look like other galaxies you can see in the sky. If you've been to the Southern hemisphere and seen the Magellenic Clouds, you have a good idea of what another galaxy looks like with the naked eye. Likewise if you've managed to pick out Andromeda from somewhere dark. Actually, the fuzzy band of our own Milky Way also gives a decent idea of how bright on the sky a galaxy would look from outside$^3$.




$^1$ This isn't true for really distant objects when cosmological surface brightness dimming starts to kick in, but that isn't the case here.



$^2$ You could pick out some individual very bright stars from further away, but the majority that make up the smooth looking light of the galaxy start to blend together pretty quickly with distance.



$^3$ Because we're inside the galactic disc there's a lot of dust to get in the way of the view which causes some dimming, but it still gives a decent idea.






share|cite|improve this answer









$endgroup$












  • $begingroup$
    That said, the Milky Way is very bright on the sky if you're dark adapted and in a place with no light pollution. Obviously, it wouldn't be visible (without some visual enhancements) in a brightly lit room.
    $endgroup$
    – Luaan
    yesterday






  • 4




    $begingroup$
    @Luaan Under good conditions, the Milky Way & Magellanic clouds are certainly bright enough to be impressive, but saying they're very bright is an exaggeration, IMHO. FWIW, I live in the southern hemisphere, and have lived in areas of low light pollution. A few years ago we had zero light pollution for a couple of days after a big storm knocked out the electricity distribution in our district. The Milky Way & Magellanic clouds looked better than ever. :)
    $endgroup$
    – PM 2Ring
    yesterday










  • $begingroup$
    Nice answer: Realistically, the characters in the movie should not be able to see any stars at all when they look out that window. At least, not unless their eyes work very differently from ours.
    $endgroup$
    – Solomon Slow
    yesterday











  • $begingroup$
    @SolomonSlow perhaps their AR TV is really dusty?
    $endgroup$
    – John Dvorak
    19 hours ago


















6












$begingroup$

Standing one or two light-years would never do it. Length of out Galaxy is about 100,000 light years. In the shown picture, the visual angle would be about 15°. Do the math, they're about 380,000 light-years away from our Galaxy.






share|cite|improve this answer








New contributor




Hack Master is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.






$endgroup$








  • 3




    $begingroup$
    Really like the math, but now what about the brightness? Would a photo from 380,000 light-years away from our Galaxy. would look as bright as in Sci-Fi film (without long exposure)
    $endgroup$
    – eli.rodriguez
    2 days ago










  • $begingroup$
    @eli.rodriguez It would definitely be far brighter than the background stars you see in the picture; however, I'd definitely turn the lights off in the room :) Also, it should be noted that the Star Wars galaxy is much bigger and denser than the Milky Way or Andromeda, so I'd expect you'd need to be more like a million light years away.
    $endgroup$
    – Luaan
    yesterday






  • 3




    $begingroup$
    Just noting that they're not looking at our galaxy, as their story takes place "in a galaxy far, far away".
    $endgroup$
    – Doug Warren
    yesterday










  • $begingroup$
    then what about standing as far away from the galaxy as the galaxy is wide? Because that was seemingly the true intent of the question, even if the exact values were off.
    $endgroup$
    – vsz
    18 hours ago


















6












$begingroup$

From NASA:




enter image description here
Explanation: The Great Spiral Galaxy in Andromeda (aka M31), a mere 2.5 million light-years distant, is the closest large spiral to our own Milky Way. Andromeda is visible to the unaided eye as a small, faint, fuzzy patch, but because its surface brightness is so low, casual skygazers can't appreciate the galaxy's impressive extent in planet Earth's sky. This entertaining composite image compares the angular size of the nearby galaxy to a brighter, more familiar celestial sight. In it, a deep exposure of Andromeda, tracing beautiful blue star clusters in spiral arms far beyond the bright yellow core, is combined with a typical view of a nearly full Moon. Shown at the same angular scale, the Moon covers about 1/2 degree on the sky, while the galaxy is clearly several times that size. The deep Andromeda exposure also includes two bright satellite galaxies, M32 and M110 (bottom).







share|cite|improve this answer









$endgroup$








  • 5




    $begingroup$
    Don't upvote this - instead write a letter to your rep about NASA funding cuts.
    $endgroup$
    – Keith McClary
    2 days ago






  • 1




    $begingroup$
    So I deduce from the NASA explanation that indeed you would be able to watch the Galaxy as in the picture but not as bright as it appears in the films.
    $endgroup$
    – eli.rodriguez
    2 days ago






  • 1




    $begingroup$
    @eli.rodriguez I can see Andromeda with binoculars - just the bright centre blob. Some can see it naked-eye. If you were ten times closer and turned off the lights in the control room and waited for your eyes to become dark-adapted, it would look about that size but not as bright. But still spectacular.
    $endgroup$
    – Keith McClary
    yesterday






  • 9




    $begingroup$
    Andromeda has an apparent magnitude of 3.44 and the moon has -12.6, so the brightness of Andromeda is greatly exaggerated in the NASA image.
    $endgroup$
    – Keith McClary
    yesterday






  • 2




    $begingroup$
    This doesn't answer the question at all, and in fact is grossly misleading with the image, where the surface brightness of Andromeda relative to the Moon is greatly exaggerated.
    $endgroup$
    – Kyle Oman
    yesterday











Your Answer





StackExchange.ifUsing("editor", function ()
return StackExchange.using("mathjaxEditing", function ()
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
);
);
, "mathjax-editing");

StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "151"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);

else
createEditor();

);

function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: false,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: null,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);



);













draft saved

draft discarded


















StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fphysics.stackexchange.com%2fquestions%2f469295%2fwould-a-galaxy-be-visible-from-outside-but-nearby%23new-answer', 'question_page');

);

Post as a guest















Required, but never shown

























3 Answers
3






active

oldest

votes








3 Answers
3






active

oldest

votes









active

oldest

votes






active

oldest

votes









19












$begingroup$

I am very deliberately not illustrating this answer with an image, because essentially any photographic image will misrepresent what you can see in the sky with the naked eye.



The surface brightness, that is the light per unit angular area, of extended objects is independent of distance$^1$. This is because the angle subtended by an object is proportional to the square of its distance, and so is the amount of light reaching an observer.



In other words, a galaxy looks about the same at any distance: it gets bigger or smaller, but its surface brightness (and therefore contrast with the background sky) doesn't change. This breaks down once you get close enough to pick out the individual stars, but with the naked eye you need to be just about inside the galaxy for that to happen$^2$.



Now the answer should be obvious: you would never see a galaxy looking like the one in your Star Wars screenshot. Rather, it would look like other galaxies you can see in the sky. If you've been to the Southern hemisphere and seen the Magellenic Clouds, you have a good idea of what another galaxy looks like with the naked eye. Likewise if you've managed to pick out Andromeda from somewhere dark. Actually, the fuzzy band of our own Milky Way also gives a decent idea of how bright on the sky a galaxy would look from outside$^3$.




$^1$ This isn't true for really distant objects when cosmological surface brightness dimming starts to kick in, but that isn't the case here.



$^2$ You could pick out some individual very bright stars from further away, but the majority that make up the smooth looking light of the galaxy start to blend together pretty quickly with distance.



$^3$ Because we're inside the galactic disc there's a lot of dust to get in the way of the view which causes some dimming, but it still gives a decent idea.






share|cite|improve this answer









$endgroup$












  • $begingroup$
    That said, the Milky Way is very bright on the sky if you're dark adapted and in a place with no light pollution. Obviously, it wouldn't be visible (without some visual enhancements) in a brightly lit room.
    $endgroup$
    – Luaan
    yesterday






  • 4




    $begingroup$
    @Luaan Under good conditions, the Milky Way & Magellanic clouds are certainly bright enough to be impressive, but saying they're very bright is an exaggeration, IMHO. FWIW, I live in the southern hemisphere, and have lived in areas of low light pollution. A few years ago we had zero light pollution for a couple of days after a big storm knocked out the electricity distribution in our district. The Milky Way & Magellanic clouds looked better than ever. :)
    $endgroup$
    – PM 2Ring
    yesterday










  • $begingroup$
    Nice answer: Realistically, the characters in the movie should not be able to see any stars at all when they look out that window. At least, not unless their eyes work very differently from ours.
    $endgroup$
    – Solomon Slow
    yesterday











  • $begingroup$
    @SolomonSlow perhaps their AR TV is really dusty?
    $endgroup$
    – John Dvorak
    19 hours ago















19












$begingroup$

I am very deliberately not illustrating this answer with an image, because essentially any photographic image will misrepresent what you can see in the sky with the naked eye.



The surface brightness, that is the light per unit angular area, of extended objects is independent of distance$^1$. This is because the angle subtended by an object is proportional to the square of its distance, and so is the amount of light reaching an observer.



In other words, a galaxy looks about the same at any distance: it gets bigger or smaller, but its surface brightness (and therefore contrast with the background sky) doesn't change. This breaks down once you get close enough to pick out the individual stars, but with the naked eye you need to be just about inside the galaxy for that to happen$^2$.



Now the answer should be obvious: you would never see a galaxy looking like the one in your Star Wars screenshot. Rather, it would look like other galaxies you can see in the sky. If you've been to the Southern hemisphere and seen the Magellenic Clouds, you have a good idea of what another galaxy looks like with the naked eye. Likewise if you've managed to pick out Andromeda from somewhere dark. Actually, the fuzzy band of our own Milky Way also gives a decent idea of how bright on the sky a galaxy would look from outside$^3$.




$^1$ This isn't true for really distant objects when cosmological surface brightness dimming starts to kick in, but that isn't the case here.



$^2$ You could pick out some individual very bright stars from further away, but the majority that make up the smooth looking light of the galaxy start to blend together pretty quickly with distance.



$^3$ Because we're inside the galactic disc there's a lot of dust to get in the way of the view which causes some dimming, but it still gives a decent idea.






share|cite|improve this answer









$endgroup$












  • $begingroup$
    That said, the Milky Way is very bright on the sky if you're dark adapted and in a place with no light pollution. Obviously, it wouldn't be visible (without some visual enhancements) in a brightly lit room.
    $endgroup$
    – Luaan
    yesterday






  • 4




    $begingroup$
    @Luaan Under good conditions, the Milky Way & Magellanic clouds are certainly bright enough to be impressive, but saying they're very bright is an exaggeration, IMHO. FWIW, I live in the southern hemisphere, and have lived in areas of low light pollution. A few years ago we had zero light pollution for a couple of days after a big storm knocked out the electricity distribution in our district. The Milky Way & Magellanic clouds looked better than ever. :)
    $endgroup$
    – PM 2Ring
    yesterday










  • $begingroup$
    Nice answer: Realistically, the characters in the movie should not be able to see any stars at all when they look out that window. At least, not unless their eyes work very differently from ours.
    $endgroup$
    – Solomon Slow
    yesterday











  • $begingroup$
    @SolomonSlow perhaps their AR TV is really dusty?
    $endgroup$
    – John Dvorak
    19 hours ago













19












19








19





$begingroup$

I am very deliberately not illustrating this answer with an image, because essentially any photographic image will misrepresent what you can see in the sky with the naked eye.



The surface brightness, that is the light per unit angular area, of extended objects is independent of distance$^1$. This is because the angle subtended by an object is proportional to the square of its distance, and so is the amount of light reaching an observer.



In other words, a galaxy looks about the same at any distance: it gets bigger or smaller, but its surface brightness (and therefore contrast with the background sky) doesn't change. This breaks down once you get close enough to pick out the individual stars, but with the naked eye you need to be just about inside the galaxy for that to happen$^2$.



Now the answer should be obvious: you would never see a galaxy looking like the one in your Star Wars screenshot. Rather, it would look like other galaxies you can see in the sky. If you've been to the Southern hemisphere and seen the Magellenic Clouds, you have a good idea of what another galaxy looks like with the naked eye. Likewise if you've managed to pick out Andromeda from somewhere dark. Actually, the fuzzy band of our own Milky Way also gives a decent idea of how bright on the sky a galaxy would look from outside$^3$.




$^1$ This isn't true for really distant objects when cosmological surface brightness dimming starts to kick in, but that isn't the case here.



$^2$ You could pick out some individual very bright stars from further away, but the majority that make up the smooth looking light of the galaxy start to blend together pretty quickly with distance.



$^3$ Because we're inside the galactic disc there's a lot of dust to get in the way of the view which causes some dimming, but it still gives a decent idea.






share|cite|improve this answer









$endgroup$



I am very deliberately not illustrating this answer with an image, because essentially any photographic image will misrepresent what you can see in the sky with the naked eye.



The surface brightness, that is the light per unit angular area, of extended objects is independent of distance$^1$. This is because the angle subtended by an object is proportional to the square of its distance, and so is the amount of light reaching an observer.



In other words, a galaxy looks about the same at any distance: it gets bigger or smaller, but its surface brightness (and therefore contrast with the background sky) doesn't change. This breaks down once you get close enough to pick out the individual stars, but with the naked eye you need to be just about inside the galaxy for that to happen$^2$.



Now the answer should be obvious: you would never see a galaxy looking like the one in your Star Wars screenshot. Rather, it would look like other galaxies you can see in the sky. If you've been to the Southern hemisphere and seen the Magellenic Clouds, you have a good idea of what another galaxy looks like with the naked eye. Likewise if you've managed to pick out Andromeda from somewhere dark. Actually, the fuzzy band of our own Milky Way also gives a decent idea of how bright on the sky a galaxy would look from outside$^3$.




$^1$ This isn't true for really distant objects when cosmological surface brightness dimming starts to kick in, but that isn't the case here.



$^2$ You could pick out some individual very bright stars from further away, but the majority that make up the smooth looking light of the galaxy start to blend together pretty quickly with distance.



$^3$ Because we're inside the galactic disc there's a lot of dust to get in the way of the view which causes some dimming, but it still gives a decent idea.







share|cite|improve this answer












share|cite|improve this answer



share|cite|improve this answer










answered yesterday









Kyle OmanKyle Oman

15.3k955111




15.3k955111











  • $begingroup$
    That said, the Milky Way is very bright on the sky if you're dark adapted and in a place with no light pollution. Obviously, it wouldn't be visible (without some visual enhancements) in a brightly lit room.
    $endgroup$
    – Luaan
    yesterday






  • 4




    $begingroup$
    @Luaan Under good conditions, the Milky Way & Magellanic clouds are certainly bright enough to be impressive, but saying they're very bright is an exaggeration, IMHO. FWIW, I live in the southern hemisphere, and have lived in areas of low light pollution. A few years ago we had zero light pollution for a couple of days after a big storm knocked out the electricity distribution in our district. The Milky Way & Magellanic clouds looked better than ever. :)
    $endgroup$
    – PM 2Ring
    yesterday










  • $begingroup$
    Nice answer: Realistically, the characters in the movie should not be able to see any stars at all when they look out that window. At least, not unless their eyes work very differently from ours.
    $endgroup$
    – Solomon Slow
    yesterday











  • $begingroup$
    @SolomonSlow perhaps their AR TV is really dusty?
    $endgroup$
    – John Dvorak
    19 hours ago
















  • $begingroup$
    That said, the Milky Way is very bright on the sky if you're dark adapted and in a place with no light pollution. Obviously, it wouldn't be visible (without some visual enhancements) in a brightly lit room.
    $endgroup$
    – Luaan
    yesterday






  • 4




    $begingroup$
    @Luaan Under good conditions, the Milky Way & Magellanic clouds are certainly bright enough to be impressive, but saying they're very bright is an exaggeration, IMHO. FWIW, I live in the southern hemisphere, and have lived in areas of low light pollution. A few years ago we had zero light pollution for a couple of days after a big storm knocked out the electricity distribution in our district. The Milky Way & Magellanic clouds looked better than ever. :)
    $endgroup$
    – PM 2Ring
    yesterday










  • $begingroup$
    Nice answer: Realistically, the characters in the movie should not be able to see any stars at all when they look out that window. At least, not unless their eyes work very differently from ours.
    $endgroup$
    – Solomon Slow
    yesterday











  • $begingroup$
    @SolomonSlow perhaps their AR TV is really dusty?
    $endgroup$
    – John Dvorak
    19 hours ago















$begingroup$
That said, the Milky Way is very bright on the sky if you're dark adapted and in a place with no light pollution. Obviously, it wouldn't be visible (without some visual enhancements) in a brightly lit room.
$endgroup$
– Luaan
yesterday




$begingroup$
That said, the Milky Way is very bright on the sky if you're dark adapted and in a place with no light pollution. Obviously, it wouldn't be visible (without some visual enhancements) in a brightly lit room.
$endgroup$
– Luaan
yesterday




4




4




$begingroup$
@Luaan Under good conditions, the Milky Way & Magellanic clouds are certainly bright enough to be impressive, but saying they're very bright is an exaggeration, IMHO. FWIW, I live in the southern hemisphere, and have lived in areas of low light pollution. A few years ago we had zero light pollution for a couple of days after a big storm knocked out the electricity distribution in our district. The Milky Way & Magellanic clouds looked better than ever. :)
$endgroup$
– PM 2Ring
yesterday




$begingroup$
@Luaan Under good conditions, the Milky Way & Magellanic clouds are certainly bright enough to be impressive, but saying they're very bright is an exaggeration, IMHO. FWIW, I live in the southern hemisphere, and have lived in areas of low light pollution. A few years ago we had zero light pollution for a couple of days after a big storm knocked out the electricity distribution in our district. The Milky Way & Magellanic clouds looked better than ever. :)
$endgroup$
– PM 2Ring
yesterday












$begingroup$
Nice answer: Realistically, the characters in the movie should not be able to see any stars at all when they look out that window. At least, not unless their eyes work very differently from ours.
$endgroup$
– Solomon Slow
yesterday





$begingroup$
Nice answer: Realistically, the characters in the movie should not be able to see any stars at all when they look out that window. At least, not unless their eyes work very differently from ours.
$endgroup$
– Solomon Slow
yesterday













$begingroup$
@SolomonSlow perhaps their AR TV is really dusty?
$endgroup$
– John Dvorak
19 hours ago




$begingroup$
@SolomonSlow perhaps their AR TV is really dusty?
$endgroup$
– John Dvorak
19 hours ago











6












$begingroup$

Standing one or two light-years would never do it. Length of out Galaxy is about 100,000 light years. In the shown picture, the visual angle would be about 15°. Do the math, they're about 380,000 light-years away from our Galaxy.






share|cite|improve this answer








New contributor




Hack Master is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.






$endgroup$








  • 3




    $begingroup$
    Really like the math, but now what about the brightness? Would a photo from 380,000 light-years away from our Galaxy. would look as bright as in Sci-Fi film (without long exposure)
    $endgroup$
    – eli.rodriguez
    2 days ago










  • $begingroup$
    @eli.rodriguez It would definitely be far brighter than the background stars you see in the picture; however, I'd definitely turn the lights off in the room :) Also, it should be noted that the Star Wars galaxy is much bigger and denser than the Milky Way or Andromeda, so I'd expect you'd need to be more like a million light years away.
    $endgroup$
    – Luaan
    yesterday






  • 3




    $begingroup$
    Just noting that they're not looking at our galaxy, as their story takes place "in a galaxy far, far away".
    $endgroup$
    – Doug Warren
    yesterday










  • $begingroup$
    then what about standing as far away from the galaxy as the galaxy is wide? Because that was seemingly the true intent of the question, even if the exact values were off.
    $endgroup$
    – vsz
    18 hours ago















6












$begingroup$

Standing one or two light-years would never do it. Length of out Galaxy is about 100,000 light years. In the shown picture, the visual angle would be about 15°. Do the math, they're about 380,000 light-years away from our Galaxy.






share|cite|improve this answer








New contributor




Hack Master is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.






$endgroup$








  • 3




    $begingroup$
    Really like the math, but now what about the brightness? Would a photo from 380,000 light-years away from our Galaxy. would look as bright as in Sci-Fi film (without long exposure)
    $endgroup$
    – eli.rodriguez
    2 days ago










  • $begingroup$
    @eli.rodriguez It would definitely be far brighter than the background stars you see in the picture; however, I'd definitely turn the lights off in the room :) Also, it should be noted that the Star Wars galaxy is much bigger and denser than the Milky Way or Andromeda, so I'd expect you'd need to be more like a million light years away.
    $endgroup$
    – Luaan
    yesterday






  • 3




    $begingroup$
    Just noting that they're not looking at our galaxy, as their story takes place "in a galaxy far, far away".
    $endgroup$
    – Doug Warren
    yesterday










  • $begingroup$
    then what about standing as far away from the galaxy as the galaxy is wide? Because that was seemingly the true intent of the question, even if the exact values were off.
    $endgroup$
    – vsz
    18 hours ago













6












6








6





$begingroup$

Standing one or two light-years would never do it. Length of out Galaxy is about 100,000 light years. In the shown picture, the visual angle would be about 15°. Do the math, they're about 380,000 light-years away from our Galaxy.






share|cite|improve this answer








New contributor




Hack Master is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.






$endgroup$



Standing one or two light-years would never do it. Length of out Galaxy is about 100,000 light years. In the shown picture, the visual angle would be about 15°. Do the math, they're about 380,000 light-years away from our Galaxy.







share|cite|improve this answer








New contributor




Hack Master is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.









share|cite|improve this answer



share|cite|improve this answer






New contributor




Hack Master is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.









answered 2 days ago









Hack MasterHack Master

692




692




New contributor




Hack Master is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.





New contributor





Hack Master is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.






Hack Master is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







  • 3




    $begingroup$
    Really like the math, but now what about the brightness? Would a photo from 380,000 light-years away from our Galaxy. would look as bright as in Sci-Fi film (without long exposure)
    $endgroup$
    – eli.rodriguez
    2 days ago










  • $begingroup$
    @eli.rodriguez It would definitely be far brighter than the background stars you see in the picture; however, I'd definitely turn the lights off in the room :) Also, it should be noted that the Star Wars galaxy is much bigger and denser than the Milky Way or Andromeda, so I'd expect you'd need to be more like a million light years away.
    $endgroup$
    – Luaan
    yesterday






  • 3




    $begingroup$
    Just noting that they're not looking at our galaxy, as their story takes place "in a galaxy far, far away".
    $endgroup$
    – Doug Warren
    yesterday










  • $begingroup$
    then what about standing as far away from the galaxy as the galaxy is wide? Because that was seemingly the true intent of the question, even if the exact values were off.
    $endgroup$
    – vsz
    18 hours ago












  • 3




    $begingroup$
    Really like the math, but now what about the brightness? Would a photo from 380,000 light-years away from our Galaxy. would look as bright as in Sci-Fi film (without long exposure)
    $endgroup$
    – eli.rodriguez
    2 days ago










  • $begingroup$
    @eli.rodriguez It would definitely be far brighter than the background stars you see in the picture; however, I'd definitely turn the lights off in the room :) Also, it should be noted that the Star Wars galaxy is much bigger and denser than the Milky Way or Andromeda, so I'd expect you'd need to be more like a million light years away.
    $endgroup$
    – Luaan
    yesterday






  • 3




    $begingroup$
    Just noting that they're not looking at our galaxy, as their story takes place "in a galaxy far, far away".
    $endgroup$
    – Doug Warren
    yesterday










  • $begingroup$
    then what about standing as far away from the galaxy as the galaxy is wide? Because that was seemingly the true intent of the question, even if the exact values were off.
    $endgroup$
    – vsz
    18 hours ago







3




3




$begingroup$
Really like the math, but now what about the brightness? Would a photo from 380,000 light-years away from our Galaxy. would look as bright as in Sci-Fi film (without long exposure)
$endgroup$
– eli.rodriguez
2 days ago




$begingroup$
Really like the math, but now what about the brightness? Would a photo from 380,000 light-years away from our Galaxy. would look as bright as in Sci-Fi film (without long exposure)
$endgroup$
– eli.rodriguez
2 days ago












$begingroup$
@eli.rodriguez It would definitely be far brighter than the background stars you see in the picture; however, I'd definitely turn the lights off in the room :) Also, it should be noted that the Star Wars galaxy is much bigger and denser than the Milky Way or Andromeda, so I'd expect you'd need to be more like a million light years away.
$endgroup$
– Luaan
yesterday




$begingroup$
@eli.rodriguez It would definitely be far brighter than the background stars you see in the picture; however, I'd definitely turn the lights off in the room :) Also, it should be noted that the Star Wars galaxy is much bigger and denser than the Milky Way or Andromeda, so I'd expect you'd need to be more like a million light years away.
$endgroup$
– Luaan
yesterday




3




3




$begingroup$
Just noting that they're not looking at our galaxy, as their story takes place "in a galaxy far, far away".
$endgroup$
– Doug Warren
yesterday




$begingroup$
Just noting that they're not looking at our galaxy, as their story takes place "in a galaxy far, far away".
$endgroup$
– Doug Warren
yesterday












$begingroup$
then what about standing as far away from the galaxy as the galaxy is wide? Because that was seemingly the true intent of the question, even if the exact values were off.
$endgroup$
– vsz
18 hours ago




$begingroup$
then what about standing as far away from the galaxy as the galaxy is wide? Because that was seemingly the true intent of the question, even if the exact values were off.
$endgroup$
– vsz
18 hours ago











6












$begingroup$

From NASA:




enter image description here
Explanation: The Great Spiral Galaxy in Andromeda (aka M31), a mere 2.5 million light-years distant, is the closest large spiral to our own Milky Way. Andromeda is visible to the unaided eye as a small, faint, fuzzy patch, but because its surface brightness is so low, casual skygazers can't appreciate the galaxy's impressive extent in planet Earth's sky. This entertaining composite image compares the angular size of the nearby galaxy to a brighter, more familiar celestial sight. In it, a deep exposure of Andromeda, tracing beautiful blue star clusters in spiral arms far beyond the bright yellow core, is combined with a typical view of a nearly full Moon. Shown at the same angular scale, the Moon covers about 1/2 degree on the sky, while the galaxy is clearly several times that size. The deep Andromeda exposure also includes two bright satellite galaxies, M32 and M110 (bottom).







share|cite|improve this answer









$endgroup$








  • 5




    $begingroup$
    Don't upvote this - instead write a letter to your rep about NASA funding cuts.
    $endgroup$
    – Keith McClary
    2 days ago






  • 1




    $begingroup$
    So I deduce from the NASA explanation that indeed you would be able to watch the Galaxy as in the picture but not as bright as it appears in the films.
    $endgroup$
    – eli.rodriguez
    2 days ago






  • 1




    $begingroup$
    @eli.rodriguez I can see Andromeda with binoculars - just the bright centre blob. Some can see it naked-eye. If you were ten times closer and turned off the lights in the control room and waited for your eyes to become dark-adapted, it would look about that size but not as bright. But still spectacular.
    $endgroup$
    – Keith McClary
    yesterday






  • 9




    $begingroup$
    Andromeda has an apparent magnitude of 3.44 and the moon has -12.6, so the brightness of Andromeda is greatly exaggerated in the NASA image.
    $endgroup$
    – Keith McClary
    yesterday






  • 2




    $begingroup$
    This doesn't answer the question at all, and in fact is grossly misleading with the image, where the surface brightness of Andromeda relative to the Moon is greatly exaggerated.
    $endgroup$
    – Kyle Oman
    yesterday















6












$begingroup$

From NASA:




enter image description here
Explanation: The Great Spiral Galaxy in Andromeda (aka M31), a mere 2.5 million light-years distant, is the closest large spiral to our own Milky Way. Andromeda is visible to the unaided eye as a small, faint, fuzzy patch, but because its surface brightness is so low, casual skygazers can't appreciate the galaxy's impressive extent in planet Earth's sky. This entertaining composite image compares the angular size of the nearby galaxy to a brighter, more familiar celestial sight. In it, a deep exposure of Andromeda, tracing beautiful blue star clusters in spiral arms far beyond the bright yellow core, is combined with a typical view of a nearly full Moon. Shown at the same angular scale, the Moon covers about 1/2 degree on the sky, while the galaxy is clearly several times that size. The deep Andromeda exposure also includes two bright satellite galaxies, M32 and M110 (bottom).







share|cite|improve this answer









$endgroup$








  • 5




    $begingroup$
    Don't upvote this - instead write a letter to your rep about NASA funding cuts.
    $endgroup$
    – Keith McClary
    2 days ago






  • 1




    $begingroup$
    So I deduce from the NASA explanation that indeed you would be able to watch the Galaxy as in the picture but not as bright as it appears in the films.
    $endgroup$
    – eli.rodriguez
    2 days ago






  • 1




    $begingroup$
    @eli.rodriguez I can see Andromeda with binoculars - just the bright centre blob. Some can see it naked-eye. If you were ten times closer and turned off the lights in the control room and waited for your eyes to become dark-adapted, it would look about that size but not as bright. But still spectacular.
    $endgroup$
    – Keith McClary
    yesterday






  • 9




    $begingroup$
    Andromeda has an apparent magnitude of 3.44 and the moon has -12.6, so the brightness of Andromeda is greatly exaggerated in the NASA image.
    $endgroup$
    – Keith McClary
    yesterday






  • 2




    $begingroup$
    This doesn't answer the question at all, and in fact is grossly misleading with the image, where the surface brightness of Andromeda relative to the Moon is greatly exaggerated.
    $endgroup$
    – Kyle Oman
    yesterday













6












6








6





$begingroup$

From NASA:




enter image description here
Explanation: The Great Spiral Galaxy in Andromeda (aka M31), a mere 2.5 million light-years distant, is the closest large spiral to our own Milky Way. Andromeda is visible to the unaided eye as a small, faint, fuzzy patch, but because its surface brightness is so low, casual skygazers can't appreciate the galaxy's impressive extent in planet Earth's sky. This entertaining composite image compares the angular size of the nearby galaxy to a brighter, more familiar celestial sight. In it, a deep exposure of Andromeda, tracing beautiful blue star clusters in spiral arms far beyond the bright yellow core, is combined with a typical view of a nearly full Moon. Shown at the same angular scale, the Moon covers about 1/2 degree on the sky, while the galaxy is clearly several times that size. The deep Andromeda exposure also includes two bright satellite galaxies, M32 and M110 (bottom).







share|cite|improve this answer









$endgroup$



From NASA:




enter image description here
Explanation: The Great Spiral Galaxy in Andromeda (aka M31), a mere 2.5 million light-years distant, is the closest large spiral to our own Milky Way. Andromeda is visible to the unaided eye as a small, faint, fuzzy patch, but because its surface brightness is so low, casual skygazers can't appreciate the galaxy's impressive extent in planet Earth's sky. This entertaining composite image compares the angular size of the nearby galaxy to a brighter, more familiar celestial sight. In it, a deep exposure of Andromeda, tracing beautiful blue star clusters in spiral arms far beyond the bright yellow core, is combined with a typical view of a nearly full Moon. Shown at the same angular scale, the Moon covers about 1/2 degree on the sky, while the galaxy is clearly several times that size. The deep Andromeda exposure also includes two bright satellite galaxies, M32 and M110 (bottom).








share|cite|improve this answer












share|cite|improve this answer



share|cite|improve this answer










answered 2 days ago









Keith McClaryKeith McClary

1,411411




1,411411







  • 5




    $begingroup$
    Don't upvote this - instead write a letter to your rep about NASA funding cuts.
    $endgroup$
    – Keith McClary
    2 days ago






  • 1




    $begingroup$
    So I deduce from the NASA explanation that indeed you would be able to watch the Galaxy as in the picture but not as bright as it appears in the films.
    $endgroup$
    – eli.rodriguez
    2 days ago






  • 1




    $begingroup$
    @eli.rodriguez I can see Andromeda with binoculars - just the bright centre blob. Some can see it naked-eye. If you were ten times closer and turned off the lights in the control room and waited for your eyes to become dark-adapted, it would look about that size but not as bright. But still spectacular.
    $endgroup$
    – Keith McClary
    yesterday






  • 9




    $begingroup$
    Andromeda has an apparent magnitude of 3.44 and the moon has -12.6, so the brightness of Andromeda is greatly exaggerated in the NASA image.
    $endgroup$
    – Keith McClary
    yesterday






  • 2




    $begingroup$
    This doesn't answer the question at all, and in fact is grossly misleading with the image, where the surface brightness of Andromeda relative to the Moon is greatly exaggerated.
    $endgroup$
    – Kyle Oman
    yesterday












  • 5




    $begingroup$
    Don't upvote this - instead write a letter to your rep about NASA funding cuts.
    $endgroup$
    – Keith McClary
    2 days ago






  • 1




    $begingroup$
    So I deduce from the NASA explanation that indeed you would be able to watch the Galaxy as in the picture but not as bright as it appears in the films.
    $endgroup$
    – eli.rodriguez
    2 days ago






  • 1




    $begingroup$
    @eli.rodriguez I can see Andromeda with binoculars - just the bright centre blob. Some can see it naked-eye. If you were ten times closer and turned off the lights in the control room and waited for your eyes to become dark-adapted, it would look about that size but not as bright. But still spectacular.
    $endgroup$
    – Keith McClary
    yesterday






  • 9




    $begingroup$
    Andromeda has an apparent magnitude of 3.44 and the moon has -12.6, so the brightness of Andromeda is greatly exaggerated in the NASA image.
    $endgroup$
    – Keith McClary
    yesterday






  • 2




    $begingroup$
    This doesn't answer the question at all, and in fact is grossly misleading with the image, where the surface brightness of Andromeda relative to the Moon is greatly exaggerated.
    $endgroup$
    – Kyle Oman
    yesterday







5




5




$begingroup$
Don't upvote this - instead write a letter to your rep about NASA funding cuts.
$endgroup$
– Keith McClary
2 days ago




$begingroup$
Don't upvote this - instead write a letter to your rep about NASA funding cuts.
$endgroup$
– Keith McClary
2 days ago




1




1




$begingroup$
So I deduce from the NASA explanation that indeed you would be able to watch the Galaxy as in the picture but not as bright as it appears in the films.
$endgroup$
– eli.rodriguez
2 days ago




$begingroup$
So I deduce from the NASA explanation that indeed you would be able to watch the Galaxy as in the picture but not as bright as it appears in the films.
$endgroup$
– eli.rodriguez
2 days ago




1




1




$begingroup$
@eli.rodriguez I can see Andromeda with binoculars - just the bright centre blob. Some can see it naked-eye. If you were ten times closer and turned off the lights in the control room and waited for your eyes to become dark-adapted, it would look about that size but not as bright. But still spectacular.
$endgroup$
– Keith McClary
yesterday




$begingroup$
@eli.rodriguez I can see Andromeda with binoculars - just the bright centre blob. Some can see it naked-eye. If you were ten times closer and turned off the lights in the control room and waited for your eyes to become dark-adapted, it would look about that size but not as bright. But still spectacular.
$endgroup$
– Keith McClary
yesterday




9




9




$begingroup$
Andromeda has an apparent magnitude of 3.44 and the moon has -12.6, so the brightness of Andromeda is greatly exaggerated in the NASA image.
$endgroup$
– Keith McClary
yesterday




$begingroup$
Andromeda has an apparent magnitude of 3.44 and the moon has -12.6, so the brightness of Andromeda is greatly exaggerated in the NASA image.
$endgroup$
– Keith McClary
yesterday




2




2




$begingroup$
This doesn't answer the question at all, and in fact is grossly misleading with the image, where the surface brightness of Andromeda relative to the Moon is greatly exaggerated.
$endgroup$
– Kyle Oman
yesterday




$begingroup$
This doesn't answer the question at all, and in fact is grossly misleading with the image, where the surface brightness of Andromeda relative to the Moon is greatly exaggerated.
$endgroup$
– Kyle Oman
yesterday

















draft saved

draft discarded
















































Thanks for contributing an answer to Physics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid


  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.

Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fphysics.stackexchange.com%2fquestions%2f469295%2fwould-a-galaxy-be-visible-from-outside-but-nearby%23new-answer', 'question_page');

);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

រឿង រ៉ូមេអូ និង ហ្ស៊ុយលីយេ សង្ខេបរឿង តួអង្គ បញ្ជីណែនាំ

Crop image to path created in TikZ? Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern)Crop an inserted image?TikZ pictures does not appear in posterImage behind and beyond crop marks?Tikz picture as large as possible on A4 PageTransparency vs image compression dilemmaHow to crop background from image automatically?Image does not cropTikzexternal capturing crop marks when externalizing pgfplots?How to include image path that contains a dollar signCrop image with left size given

Romeo and Juliet ContentsCharactersSynopsisSourcesDate and textThemes and motifsCriticism and interpretationLegacyScene by sceneSee alsoNotes and referencesSourcesExternal linksNavigation menu"Consumer Price Index (estimate) 1800–"10.2307/28710160037-3222287101610.1093/res/II.5.31910.2307/45967845967810.2307/2869925286992510.1525/jams.1982.35.3.03a00050"Dada Masilo: South African dancer who breaks the rules"10.1093/res/os-XV.57.1610.2307/28680942868094"Sweet Sorrow: Mann-Korman's Romeo and Juliet Closes Sept. 5 at MN's Ordway"the original10.2307/45957745957710.1017/CCOL0521570476.009"Ram Leela box office collections hit massive Rs 100 crore, pulverises prediction"Archived"Broadway Revival of Romeo and Juliet, Starring Orlando Bloom and Condola Rashad, Will Close Dec. 8"Archived10.1075/jhp.7.1.04hon"Wherefore art thou, Romeo? To make us laugh at Navy Pier"the original10.1093/gmo/9781561592630.article.O006772"Ram-leela Review Roundup: Critics Hail Film as Best Adaptation of Romeo and Juliet"Archived10.2307/31946310047-77293194631"Romeo and Juliet get Twitter treatment""Juliet's Nurse by Lois Leveen""Romeo and Juliet: Orlando Bloom's Broadway Debut Released in Theaters for Valentine's Day"Archived"Romeo and Juliet Has No Balcony"10.1093/gmo/9781561592630.article.O00778110.2307/2867423286742310.1076/enst.82.2.115.959510.1080/00138380601042675"A plague o' both your houses: error in GCSE exam paper forces apology""Juliet of the Five O'Clock Shadow, and Other Wonders"10.2307/33912430027-4321339124310.2307/28487440038-7134284874410.2307/29123140149-661129123144728341M"Weekender Guide: Shakespeare on The Drive""balcony"UK public library membership"romeo"UK public library membership10.1017/CCOL9780521844291"Post-Zionist Critique on Israel and the Palestinians Part III: Popular Culture"10.2307/25379071533-86140377-919X2537907"Capulets and Montagues: UK exam board admit mixing names up in Romeo and Juliet paper"Istoria Novellamente Ritrovata di Due Nobili Amanti2027/mdp.390150822329610820-750X"GCSE exam error: Board accidentally rewrites Shakespeare"10.2307/29176390149-66112917639"Exam board apologises after error in English GCSE paper which confused characters in Shakespeare's Romeo and Juliet""From Mariotto and Ganozza to Romeo and Guilietta: Metamorphoses of a Renaissance Tale"10.2307/37323537323510.2307/2867455286745510.2307/28678912867891"10 Questions for Taylor Swift"10.2307/28680922868092"Haymarket Theatre""The Zeffirelli Way: Revealing Talk by Florentine Director""Michael Smuin: 1938-2007 / Prolific dance director had showy career"The Life and Art of Edwin BoothRomeo and JulietRomeo and JulietRomeo and JulietRomeo and JulietEasy Read Romeo and JulietRomeo and Julieteeecb12003684p(data)4099369-3n8211610759dbe00d-a9e2-41a3-b2c1-977dd692899302814385X313670221313670221