When Does an Atlas Uniquely Define a Manifold? The Next CEO of Stack OverflowWhy maximal atlasAtlas on product manifoldWhat is the significance of incompatible coordinate charts for a manifold?Why do we require that a complex manifold has the structure of a real manifold?Problem defining a smooth m-manifold via a smooth atlasHow to define differentiable functions on manifolds?why is a differentiable manifold defined by a diffeomorphism of the charts in its Atlas?Is the maximal atlas for a topological manifold unique?Manifolds with Boundary and Maximal AtlasCan't understand the definition of equivalence of topological atlas.

What connection does MS Office have to Netscape Navigator?

Why isn't the Mueller report being released completely and unredacted?

WOW air has ceased operation, can I get my tickets refunded?

Where do students learn to solve polynomial equations these days?

Why do airplanes bank sharply to the right after air-to-air refueling?

Example of a Mathematician/Physicist whose Other Publications during their PhD eclipsed their PhD Thesis

Dominated convergence theorem - what sequence?

Are police here, aren't itthey?

How to check if all elements of 1 list are in the *same quantity* and in any order, in the list2?

Is it my responsibility to learn a new technology in my own time my employer wants to implement?

Math-accent symbol over parentheses enclosing accented symbol (amsmath)

If Nick Fury and Coulson already knew about aliens (Kree and Skrull) why did they wait until Thor's appearance to start making weapons?

Find non-case sensitive string in a mixed list of elements?

How to install OpenCV on Raspbian Stretch?

Why don't programming languages automatically manage the synchronous/asynchronous problem?

RigExpert AA-35 - Interpreting The Information

A small doubt about the dominated convergence theorem

Prepend last line of stdin to entire stdin

Chain wire methods together in Lightning Web Components

Why isn't acceleration always zero whenever velocity is zero, such as the moment a ball bounces off a wall?

How to count occurrences of text in a file?

Why doesn't UK go for the same deal Japan has with EU to resolve Brexit?

Is it possible to use a NPN BJT as switch, from single power source?

Would this house-rule that treats advantage as a +1 to the roll instead (and disadvantage as -1) and allows them to stack be balanced?



When Does an Atlas Uniquely Define a Manifold?



The Next CEO of Stack OverflowWhy maximal atlasAtlas on product manifoldWhat is the significance of incompatible coordinate charts for a manifold?Why do we require that a complex manifold has the structure of a real manifold?Problem defining a smooth m-manifold via a smooth atlasHow to define differentiable functions on manifolds?why is a differentiable manifold defined by a diffeomorphism of the charts in its Atlas?Is the maximal atlas for a topological manifold unique?Manifolds with Boundary and Maximal AtlasCan't understand the definition of equivalence of topological atlas.










6












$begingroup$


I am totally new to differential geometry and am having trouble understanding a very basic idea. In what follows, I apologize for being gratuitously pedantic, but I want to be sure I clearly understand what's going on.



If $M$ is a set and $T$ is a topology on $M$ such that $(M,T)$ is Hausdorff and second countable, then $M$ is a topological manifold if for all $pin M$ there exists an ordered pair $(U,x)$ such that $U subset M$ is $T$-open and $x:Urightarrow mathbbR^d$ is a homeomorphism whose image is an open subset of $mathbbR^d$ in the standard topology.



Ordered pairs $(U,x)$ that satisfy the conditions in the above paragraph are called charts on the manifold. An atlas for $M$ is a collection of charts on $M$, $A = (U_a,x_a)colon a in I$, such that $cup_alphain IU_a = M$.



Question 1: Does every manifold have at least one atlas?



My answer: I believe so, since by the definition of a manifold there exists at least one chart for each point, and the collection of either all or at least one of the charts at each point can be taken as an atlas. Perhaps however there is some technical problem in set theory with this construction.



Question 2: Does an atlas uniquely define a manifold? That is, if $A$ and $A'$ are atlases and $A neq A'$, is it necessary true that the manifolds with $(X,T)$ as their underlying space but with atlases $A$ and $A'$ respectively are different? (In the naive sense--not considering the possibility that they are diffeomorphic)



I believe the core concept I'm struggling with here is what the naive notion of equivalence is for manifolds. (For example, for topological spaces "naive equivalence" means that the two underlying sets are equal and the two topologies have exactly the same open sets, rather than the existence of a homeomorphism, which is a more sophisticated notion of equivalence.)



If instead we define a topological manifold as an ordered triple $(M,T,A)$, where $A$ is an atlas, my confusion vanishes. But then naive equivalence requires exactly the same charts in the atlas, which might be too much to reasonably say that two manifolds are the same. I've also not seen this definition in any of the references I'm using. This brings up the following question.



Question 3: Is it possible to define a manifold as an ordered triple, as in the paragraph above?










share|cite|improve this question









$endgroup$











  • $begingroup$
    "Diffeomorphic" is the wrong word if you're talking about topological manifolds--the non-naive notion of equivalence is just homeomorphism.
    $endgroup$
    – Eric Wofsey
    yesterday















6












$begingroup$


I am totally new to differential geometry and am having trouble understanding a very basic idea. In what follows, I apologize for being gratuitously pedantic, but I want to be sure I clearly understand what's going on.



If $M$ is a set and $T$ is a topology on $M$ such that $(M,T)$ is Hausdorff and second countable, then $M$ is a topological manifold if for all $pin M$ there exists an ordered pair $(U,x)$ such that $U subset M$ is $T$-open and $x:Urightarrow mathbbR^d$ is a homeomorphism whose image is an open subset of $mathbbR^d$ in the standard topology.



Ordered pairs $(U,x)$ that satisfy the conditions in the above paragraph are called charts on the manifold. An atlas for $M$ is a collection of charts on $M$, $A = (U_a,x_a)colon a in I$, such that $cup_alphain IU_a = M$.



Question 1: Does every manifold have at least one atlas?



My answer: I believe so, since by the definition of a manifold there exists at least one chart for each point, and the collection of either all or at least one of the charts at each point can be taken as an atlas. Perhaps however there is some technical problem in set theory with this construction.



Question 2: Does an atlas uniquely define a manifold? That is, if $A$ and $A'$ are atlases and $A neq A'$, is it necessary true that the manifolds with $(X,T)$ as their underlying space but with atlases $A$ and $A'$ respectively are different? (In the naive sense--not considering the possibility that they are diffeomorphic)



I believe the core concept I'm struggling with here is what the naive notion of equivalence is for manifolds. (For example, for topological spaces "naive equivalence" means that the two underlying sets are equal and the two topologies have exactly the same open sets, rather than the existence of a homeomorphism, which is a more sophisticated notion of equivalence.)



If instead we define a topological manifold as an ordered triple $(M,T,A)$, where $A$ is an atlas, my confusion vanishes. But then naive equivalence requires exactly the same charts in the atlas, which might be too much to reasonably say that two manifolds are the same. I've also not seen this definition in any of the references I'm using. This brings up the following question.



Question 3: Is it possible to define a manifold as an ordered triple, as in the paragraph above?










share|cite|improve this question









$endgroup$











  • $begingroup$
    "Diffeomorphic" is the wrong word if you're talking about topological manifolds--the non-naive notion of equivalence is just homeomorphism.
    $endgroup$
    – Eric Wofsey
    yesterday













6












6








6


1



$begingroup$


I am totally new to differential geometry and am having trouble understanding a very basic idea. In what follows, I apologize for being gratuitously pedantic, but I want to be sure I clearly understand what's going on.



If $M$ is a set and $T$ is a topology on $M$ such that $(M,T)$ is Hausdorff and second countable, then $M$ is a topological manifold if for all $pin M$ there exists an ordered pair $(U,x)$ such that $U subset M$ is $T$-open and $x:Urightarrow mathbbR^d$ is a homeomorphism whose image is an open subset of $mathbbR^d$ in the standard topology.



Ordered pairs $(U,x)$ that satisfy the conditions in the above paragraph are called charts on the manifold. An atlas for $M$ is a collection of charts on $M$, $A = (U_a,x_a)colon a in I$, such that $cup_alphain IU_a = M$.



Question 1: Does every manifold have at least one atlas?



My answer: I believe so, since by the definition of a manifold there exists at least one chart for each point, and the collection of either all or at least one of the charts at each point can be taken as an atlas. Perhaps however there is some technical problem in set theory with this construction.



Question 2: Does an atlas uniquely define a manifold? That is, if $A$ and $A'$ are atlases and $A neq A'$, is it necessary true that the manifolds with $(X,T)$ as their underlying space but with atlases $A$ and $A'$ respectively are different? (In the naive sense--not considering the possibility that they are diffeomorphic)



I believe the core concept I'm struggling with here is what the naive notion of equivalence is for manifolds. (For example, for topological spaces "naive equivalence" means that the two underlying sets are equal and the two topologies have exactly the same open sets, rather than the existence of a homeomorphism, which is a more sophisticated notion of equivalence.)



If instead we define a topological manifold as an ordered triple $(M,T,A)$, where $A$ is an atlas, my confusion vanishes. But then naive equivalence requires exactly the same charts in the atlas, which might be too much to reasonably say that two manifolds are the same. I've also not seen this definition in any of the references I'm using. This brings up the following question.



Question 3: Is it possible to define a manifold as an ordered triple, as in the paragraph above?










share|cite|improve this question









$endgroup$




I am totally new to differential geometry and am having trouble understanding a very basic idea. In what follows, I apologize for being gratuitously pedantic, but I want to be sure I clearly understand what's going on.



If $M$ is a set and $T$ is a topology on $M$ such that $(M,T)$ is Hausdorff and second countable, then $M$ is a topological manifold if for all $pin M$ there exists an ordered pair $(U,x)$ such that $U subset M$ is $T$-open and $x:Urightarrow mathbbR^d$ is a homeomorphism whose image is an open subset of $mathbbR^d$ in the standard topology.



Ordered pairs $(U,x)$ that satisfy the conditions in the above paragraph are called charts on the manifold. An atlas for $M$ is a collection of charts on $M$, $A = (U_a,x_a)colon a in I$, such that $cup_alphain IU_a = M$.



Question 1: Does every manifold have at least one atlas?



My answer: I believe so, since by the definition of a manifold there exists at least one chart for each point, and the collection of either all or at least one of the charts at each point can be taken as an atlas. Perhaps however there is some technical problem in set theory with this construction.



Question 2: Does an atlas uniquely define a manifold? That is, if $A$ and $A'$ are atlases and $A neq A'$, is it necessary true that the manifolds with $(X,T)$ as their underlying space but with atlases $A$ and $A'$ respectively are different? (In the naive sense--not considering the possibility that they are diffeomorphic)



I believe the core concept I'm struggling with here is what the naive notion of equivalence is for manifolds. (For example, for topological spaces "naive equivalence" means that the two underlying sets are equal and the two topologies have exactly the same open sets, rather than the existence of a homeomorphism, which is a more sophisticated notion of equivalence.)



If instead we define a topological manifold as an ordered triple $(M,T,A)$, where $A$ is an atlas, my confusion vanishes. But then naive equivalence requires exactly the same charts in the atlas, which might be too much to reasonably say that two manifolds are the same. I've also not seen this definition in any of the references I'm using. This brings up the following question.



Question 3: Is it possible to define a manifold as an ordered triple, as in the paragraph above?







differential-geometry manifolds differential-topology smooth-manifolds






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked 2 days ago









SZNSZN

2,750720




2,750720











  • $begingroup$
    "Diffeomorphic" is the wrong word if you're talking about topological manifolds--the non-naive notion of equivalence is just homeomorphism.
    $endgroup$
    – Eric Wofsey
    yesterday
















  • $begingroup$
    "Diffeomorphic" is the wrong word if you're talking about topological manifolds--the non-naive notion of equivalence is just homeomorphism.
    $endgroup$
    – Eric Wofsey
    yesterday















$begingroup$
"Diffeomorphic" is the wrong word if you're talking about topological manifolds--the non-naive notion of equivalence is just homeomorphism.
$endgroup$
– Eric Wofsey
yesterday




$begingroup$
"Diffeomorphic" is the wrong word if you're talking about topological manifolds--the non-naive notion of equivalence is just homeomorphism.
$endgroup$
– Eric Wofsey
yesterday










1 Answer
1






active

oldest

votes


















6












$begingroup$

For Question 1, you are right. For instance, you can just take the set of all charts on $(M,T)$ and they will be an atlas.



For Questions 2 and 3, as you have defined a topological manifold, a topological manifold is just a topological space which satisfies certain properties. So, an atlas doesn't actually have anything to do with what a topological manifold is (an atlas just happens to exist on any topological manifold). Two manifolds are equal iff they are equal as topological spaces.



That said, no one actually cares about equality of manifolds. What people actually care about is whether two manifolds are homeomorphic (or more specifically, whether specific maps between them are homeomorphisms). In other words, the "naive equivalence" you are asking about is not important for any applications. As a result, it's perfectly fine to use a definition as you propose in Question 3, where an atlas is part of what a manifold is. This will change what equality of manifolds means (i.e., "naive equivalence") but will not change the notion of equivalence that actually matters, which is homeomorphism.



In the language of category theory, you can define a category $Man$ whose objects are topological manifolds (according to your original definition) and whose maps are continuous maps. You can also define a category $Man'$ whose objects are topological manifolds together with an atlas and whose maps are continuous maps. There is a forgetful functor $F:Man'to Man$ which forgets the atlas. This functor is not an isomorphism of categories, but it is an equivalence of categories, which is good enough for everything people ever want to do with manifolds.




As a final remark, atlases are pretty irrelevant to the study of topological manifolds. The reason atlases are important is to define smooth manifolds, which impose some additional conditions on what kind of atlases are allowed. A smoooth manifold cannot be defined as just a topological space, but instead must be defined as a topological space together with an atlas satisfying certain assumptions (or a topological space together with some other additional structure equivalent to an atlas).



For smooth manifolds, although an atlas must be included in the definition, there is still an issue similar to your Questions 2 and 3. Namely, multiple different atlases can give "the same" smooth manifold, in the sense that the identity map is a diffeomorphism. This means that if you define a smooth manifold as a triple $(M,T,A)$ where $(M,T)$ is a topological space and $A$ is a smooth atlas on $(M,T)$, then the "naive equivalence" is not the equivalence you actually care about, similar to if you used the definition for topological manifolds you proposed in Question 3.



To avoid this, many authors instead define a smooth manifold as a triple $(M,T,A)$ where $(M,T)$ is a topological space and $A$ is a maximal smooth atlas on $(M,T)$ (or alternatively, $A$ is an equivalence class of smooth atlases on $(M,T)$). This makes the choice of $A$ unique, in the sense that if $(M,T,A)$ and $(M,T,A')$ are smooth manifolds such that the identity map $Mto M$ is a diffeomorphism between them, then $A=A'$. As with topological manifolds, though, it doesn't really matter whether you use this definition or the previous one, since all that changes is what it means for two smooth manifolds to literally be equal and that's not what we actually care about.






share|cite|improve this answer











$endgroup$












  • $begingroup$
    Thank you, Eric! I ultimately want a definition I can use for smooth manifolds, but I thought this was a more basic issue with the definition of 'manifold' itself. May I make an addendum to the question, basically asking (2) and (3) for smooth manifolds? Thank you again.
    $endgroup$
    – SZN
    yesterday










  • $begingroup$
    I have added some more comments on the smooth case.
    $endgroup$
    – Eric Wofsey
    yesterday










  • $begingroup$
    Awesome. Thanks!
    $endgroup$
    – SZN
    yesterday











Your Answer





StackExchange.ifUsing("editor", function ()
return StackExchange.using("mathjaxEditing", function ()
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
);
);
, "mathjax-editing");

StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "69"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);

else
createEditor();

);

function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);



);













draft saved

draft discarded


















StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3166644%2fwhen-does-an-atlas-uniquely-define-a-manifold%23new-answer', 'question_page');

);

Post as a guest















Required, but never shown

























1 Answer
1






active

oldest

votes








1 Answer
1






active

oldest

votes









active

oldest

votes






active

oldest

votes









6












$begingroup$

For Question 1, you are right. For instance, you can just take the set of all charts on $(M,T)$ and they will be an atlas.



For Questions 2 and 3, as you have defined a topological manifold, a topological manifold is just a topological space which satisfies certain properties. So, an atlas doesn't actually have anything to do with what a topological manifold is (an atlas just happens to exist on any topological manifold). Two manifolds are equal iff they are equal as topological spaces.



That said, no one actually cares about equality of manifolds. What people actually care about is whether two manifolds are homeomorphic (or more specifically, whether specific maps between them are homeomorphisms). In other words, the "naive equivalence" you are asking about is not important for any applications. As a result, it's perfectly fine to use a definition as you propose in Question 3, where an atlas is part of what a manifold is. This will change what equality of manifolds means (i.e., "naive equivalence") but will not change the notion of equivalence that actually matters, which is homeomorphism.



In the language of category theory, you can define a category $Man$ whose objects are topological manifolds (according to your original definition) and whose maps are continuous maps. You can also define a category $Man'$ whose objects are topological manifolds together with an atlas and whose maps are continuous maps. There is a forgetful functor $F:Man'to Man$ which forgets the atlas. This functor is not an isomorphism of categories, but it is an equivalence of categories, which is good enough for everything people ever want to do with manifolds.




As a final remark, atlases are pretty irrelevant to the study of topological manifolds. The reason atlases are important is to define smooth manifolds, which impose some additional conditions on what kind of atlases are allowed. A smoooth manifold cannot be defined as just a topological space, but instead must be defined as a topological space together with an atlas satisfying certain assumptions (or a topological space together with some other additional structure equivalent to an atlas).



For smooth manifolds, although an atlas must be included in the definition, there is still an issue similar to your Questions 2 and 3. Namely, multiple different atlases can give "the same" smooth manifold, in the sense that the identity map is a diffeomorphism. This means that if you define a smooth manifold as a triple $(M,T,A)$ where $(M,T)$ is a topological space and $A$ is a smooth atlas on $(M,T)$, then the "naive equivalence" is not the equivalence you actually care about, similar to if you used the definition for topological manifolds you proposed in Question 3.



To avoid this, many authors instead define a smooth manifold as a triple $(M,T,A)$ where $(M,T)$ is a topological space and $A$ is a maximal smooth atlas on $(M,T)$ (or alternatively, $A$ is an equivalence class of smooth atlases on $(M,T)$). This makes the choice of $A$ unique, in the sense that if $(M,T,A)$ and $(M,T,A')$ are smooth manifolds such that the identity map $Mto M$ is a diffeomorphism between them, then $A=A'$. As with topological manifolds, though, it doesn't really matter whether you use this definition or the previous one, since all that changes is what it means for two smooth manifolds to literally be equal and that's not what we actually care about.






share|cite|improve this answer











$endgroup$












  • $begingroup$
    Thank you, Eric! I ultimately want a definition I can use for smooth manifolds, but I thought this was a more basic issue with the definition of 'manifold' itself. May I make an addendum to the question, basically asking (2) and (3) for smooth manifolds? Thank you again.
    $endgroup$
    – SZN
    yesterday










  • $begingroup$
    I have added some more comments on the smooth case.
    $endgroup$
    – Eric Wofsey
    yesterday










  • $begingroup$
    Awesome. Thanks!
    $endgroup$
    – SZN
    yesterday















6












$begingroup$

For Question 1, you are right. For instance, you can just take the set of all charts on $(M,T)$ and they will be an atlas.



For Questions 2 and 3, as you have defined a topological manifold, a topological manifold is just a topological space which satisfies certain properties. So, an atlas doesn't actually have anything to do with what a topological manifold is (an atlas just happens to exist on any topological manifold). Two manifolds are equal iff they are equal as topological spaces.



That said, no one actually cares about equality of manifolds. What people actually care about is whether two manifolds are homeomorphic (or more specifically, whether specific maps between them are homeomorphisms). In other words, the "naive equivalence" you are asking about is not important for any applications. As a result, it's perfectly fine to use a definition as you propose in Question 3, where an atlas is part of what a manifold is. This will change what equality of manifolds means (i.e., "naive equivalence") but will not change the notion of equivalence that actually matters, which is homeomorphism.



In the language of category theory, you can define a category $Man$ whose objects are topological manifolds (according to your original definition) and whose maps are continuous maps. You can also define a category $Man'$ whose objects are topological manifolds together with an atlas and whose maps are continuous maps. There is a forgetful functor $F:Man'to Man$ which forgets the atlas. This functor is not an isomorphism of categories, but it is an equivalence of categories, which is good enough for everything people ever want to do with manifolds.




As a final remark, atlases are pretty irrelevant to the study of topological manifolds. The reason atlases are important is to define smooth manifolds, which impose some additional conditions on what kind of atlases are allowed. A smoooth manifold cannot be defined as just a topological space, but instead must be defined as a topological space together with an atlas satisfying certain assumptions (or a topological space together with some other additional structure equivalent to an atlas).



For smooth manifolds, although an atlas must be included in the definition, there is still an issue similar to your Questions 2 and 3. Namely, multiple different atlases can give "the same" smooth manifold, in the sense that the identity map is a diffeomorphism. This means that if you define a smooth manifold as a triple $(M,T,A)$ where $(M,T)$ is a topological space and $A$ is a smooth atlas on $(M,T)$, then the "naive equivalence" is not the equivalence you actually care about, similar to if you used the definition for topological manifolds you proposed in Question 3.



To avoid this, many authors instead define a smooth manifold as a triple $(M,T,A)$ where $(M,T)$ is a topological space and $A$ is a maximal smooth atlas on $(M,T)$ (or alternatively, $A$ is an equivalence class of smooth atlases on $(M,T)$). This makes the choice of $A$ unique, in the sense that if $(M,T,A)$ and $(M,T,A')$ are smooth manifolds such that the identity map $Mto M$ is a diffeomorphism between them, then $A=A'$. As with topological manifolds, though, it doesn't really matter whether you use this definition or the previous one, since all that changes is what it means for two smooth manifolds to literally be equal and that's not what we actually care about.






share|cite|improve this answer











$endgroup$












  • $begingroup$
    Thank you, Eric! I ultimately want a definition I can use for smooth manifolds, but I thought this was a more basic issue with the definition of 'manifold' itself. May I make an addendum to the question, basically asking (2) and (3) for smooth manifolds? Thank you again.
    $endgroup$
    – SZN
    yesterday










  • $begingroup$
    I have added some more comments on the smooth case.
    $endgroup$
    – Eric Wofsey
    yesterday










  • $begingroup$
    Awesome. Thanks!
    $endgroup$
    – SZN
    yesterday













6












6








6





$begingroup$

For Question 1, you are right. For instance, you can just take the set of all charts on $(M,T)$ and they will be an atlas.



For Questions 2 and 3, as you have defined a topological manifold, a topological manifold is just a topological space which satisfies certain properties. So, an atlas doesn't actually have anything to do with what a topological manifold is (an atlas just happens to exist on any topological manifold). Two manifolds are equal iff they are equal as topological spaces.



That said, no one actually cares about equality of manifolds. What people actually care about is whether two manifolds are homeomorphic (or more specifically, whether specific maps between them are homeomorphisms). In other words, the "naive equivalence" you are asking about is not important for any applications. As a result, it's perfectly fine to use a definition as you propose in Question 3, where an atlas is part of what a manifold is. This will change what equality of manifolds means (i.e., "naive equivalence") but will not change the notion of equivalence that actually matters, which is homeomorphism.



In the language of category theory, you can define a category $Man$ whose objects are topological manifolds (according to your original definition) and whose maps are continuous maps. You can also define a category $Man'$ whose objects are topological manifolds together with an atlas and whose maps are continuous maps. There is a forgetful functor $F:Man'to Man$ which forgets the atlas. This functor is not an isomorphism of categories, but it is an equivalence of categories, which is good enough for everything people ever want to do with manifolds.




As a final remark, atlases are pretty irrelevant to the study of topological manifolds. The reason atlases are important is to define smooth manifolds, which impose some additional conditions on what kind of atlases are allowed. A smoooth manifold cannot be defined as just a topological space, but instead must be defined as a topological space together with an atlas satisfying certain assumptions (or a topological space together with some other additional structure equivalent to an atlas).



For smooth manifolds, although an atlas must be included in the definition, there is still an issue similar to your Questions 2 and 3. Namely, multiple different atlases can give "the same" smooth manifold, in the sense that the identity map is a diffeomorphism. This means that if you define a smooth manifold as a triple $(M,T,A)$ where $(M,T)$ is a topological space and $A$ is a smooth atlas on $(M,T)$, then the "naive equivalence" is not the equivalence you actually care about, similar to if you used the definition for topological manifolds you proposed in Question 3.



To avoid this, many authors instead define a smooth manifold as a triple $(M,T,A)$ where $(M,T)$ is a topological space and $A$ is a maximal smooth atlas on $(M,T)$ (or alternatively, $A$ is an equivalence class of smooth atlases on $(M,T)$). This makes the choice of $A$ unique, in the sense that if $(M,T,A)$ and $(M,T,A')$ are smooth manifolds such that the identity map $Mto M$ is a diffeomorphism between them, then $A=A'$. As with topological manifolds, though, it doesn't really matter whether you use this definition or the previous one, since all that changes is what it means for two smooth manifolds to literally be equal and that's not what we actually care about.






share|cite|improve this answer











$endgroup$



For Question 1, you are right. For instance, you can just take the set of all charts on $(M,T)$ and they will be an atlas.



For Questions 2 and 3, as you have defined a topological manifold, a topological manifold is just a topological space which satisfies certain properties. So, an atlas doesn't actually have anything to do with what a topological manifold is (an atlas just happens to exist on any topological manifold). Two manifolds are equal iff they are equal as topological spaces.



That said, no one actually cares about equality of manifolds. What people actually care about is whether two manifolds are homeomorphic (or more specifically, whether specific maps between them are homeomorphisms). In other words, the "naive equivalence" you are asking about is not important for any applications. As a result, it's perfectly fine to use a definition as you propose in Question 3, where an atlas is part of what a manifold is. This will change what equality of manifolds means (i.e., "naive equivalence") but will not change the notion of equivalence that actually matters, which is homeomorphism.



In the language of category theory, you can define a category $Man$ whose objects are topological manifolds (according to your original definition) and whose maps are continuous maps. You can also define a category $Man'$ whose objects are topological manifolds together with an atlas and whose maps are continuous maps. There is a forgetful functor $F:Man'to Man$ which forgets the atlas. This functor is not an isomorphism of categories, but it is an equivalence of categories, which is good enough for everything people ever want to do with manifolds.




As a final remark, atlases are pretty irrelevant to the study of topological manifolds. The reason atlases are important is to define smooth manifolds, which impose some additional conditions on what kind of atlases are allowed. A smoooth manifold cannot be defined as just a topological space, but instead must be defined as a topological space together with an atlas satisfying certain assumptions (or a topological space together with some other additional structure equivalent to an atlas).



For smooth manifolds, although an atlas must be included in the definition, there is still an issue similar to your Questions 2 and 3. Namely, multiple different atlases can give "the same" smooth manifold, in the sense that the identity map is a diffeomorphism. This means that if you define a smooth manifold as a triple $(M,T,A)$ where $(M,T)$ is a topological space and $A$ is a smooth atlas on $(M,T)$, then the "naive equivalence" is not the equivalence you actually care about, similar to if you used the definition for topological manifolds you proposed in Question 3.



To avoid this, many authors instead define a smooth manifold as a triple $(M,T,A)$ where $(M,T)$ is a topological space and $A$ is a maximal smooth atlas on $(M,T)$ (or alternatively, $A$ is an equivalence class of smooth atlases on $(M,T)$). This makes the choice of $A$ unique, in the sense that if $(M,T,A)$ and $(M,T,A')$ are smooth manifolds such that the identity map $Mto M$ is a diffeomorphism between them, then $A=A'$. As with topological manifolds, though, it doesn't really matter whether you use this definition or the previous one, since all that changes is what it means for two smooth manifolds to literally be equal and that's not what we actually care about.







share|cite|improve this answer














share|cite|improve this answer



share|cite|improve this answer








edited yesterday

























answered yesterday









Eric WofseyEric Wofsey

191k14216349




191k14216349











  • $begingroup$
    Thank you, Eric! I ultimately want a definition I can use for smooth manifolds, but I thought this was a more basic issue with the definition of 'manifold' itself. May I make an addendum to the question, basically asking (2) and (3) for smooth manifolds? Thank you again.
    $endgroup$
    – SZN
    yesterday










  • $begingroup$
    I have added some more comments on the smooth case.
    $endgroup$
    – Eric Wofsey
    yesterday










  • $begingroup$
    Awesome. Thanks!
    $endgroup$
    – SZN
    yesterday
















  • $begingroup$
    Thank you, Eric! I ultimately want a definition I can use for smooth manifolds, but I thought this was a more basic issue with the definition of 'manifold' itself. May I make an addendum to the question, basically asking (2) and (3) for smooth manifolds? Thank you again.
    $endgroup$
    – SZN
    yesterday










  • $begingroup$
    I have added some more comments on the smooth case.
    $endgroup$
    – Eric Wofsey
    yesterday










  • $begingroup$
    Awesome. Thanks!
    $endgroup$
    – SZN
    yesterday















$begingroup$
Thank you, Eric! I ultimately want a definition I can use for smooth manifolds, but I thought this was a more basic issue with the definition of 'manifold' itself. May I make an addendum to the question, basically asking (2) and (3) for smooth manifolds? Thank you again.
$endgroup$
– SZN
yesterday




$begingroup$
Thank you, Eric! I ultimately want a definition I can use for smooth manifolds, but I thought this was a more basic issue with the definition of 'manifold' itself. May I make an addendum to the question, basically asking (2) and (3) for smooth manifolds? Thank you again.
$endgroup$
– SZN
yesterday












$begingroup$
I have added some more comments on the smooth case.
$endgroup$
– Eric Wofsey
yesterday




$begingroup$
I have added some more comments on the smooth case.
$endgroup$
– Eric Wofsey
yesterday












$begingroup$
Awesome. Thanks!
$endgroup$
– SZN
yesterday




$begingroup$
Awesome. Thanks!
$endgroup$
– SZN
yesterday

















draft saved

draft discarded
















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid


  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.

Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3166644%2fwhen-does-an-atlas-uniquely-define-a-manifold%23new-answer', 'question_page');

);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Crop image to path created in TikZ? Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern)Crop an inserted image?TikZ pictures does not appear in posterImage behind and beyond crop marks?Tikz picture as large as possible on A4 PageTransparency vs image compression dilemmaHow to crop background from image automatically?Image does not cropTikzexternal capturing crop marks when externalizing pgfplots?How to include image path that contains a dollar signCrop image with left size given

រឿង រ៉ូមេអូ និង ហ្ស៊ុយលីយេ សង្ខេបរឿង តួអង្គ បញ្ជីណែនាំ

Ромео және Джульетта Мазмұны Қысқаша сипаттамасы Кейіпкерлері Кино Дереккөздер Бағыттау мәзірі