Is the gradient of the self-intersections of a curve zero? Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern)Monotonic curvature and self intersections.Parallel translation along a self intersecting curveSelf adjoint total covariant derivativeStokes Theorem for Manifolds with Self-IntersectionsIntersections of two curves in $mathbbR^n$Self intersections of a smooth closed curve being deformedProving that strictly monotonic curvature implies no self intersections (more specifically, using the following inequalities)Does an immersed curve in general position has finite self-intersections?Can we describe Injective and non-Injective functions through intersections?Problem understanding the gradient of a field.
Use BFD on a Virtual-Template Interface
Why do people hide their license plates in the EU?
illegal generic type for instanceof when using local classes
Is there a (better) way to access $wpdb results?
What exactly is a "Meth" in Altered Carbon?
What does the word "veer" mean here?
How would the world control an invulnerable immortal mass murderer?
How does the particle を relate to the verb 行く in the structure「A を + B に行く」?
Single word antonym of "flightless"
Why is "Consequences inflicted." not a sentence?
Is it ethical to give a final exam after the professor has quit before teaching the remaining chapters of the course?
List *all* the tuples!
Why am I getting the error "non-boolean type specified in a context where a condition is expected" for this request?
At the end of Thor: Ragnarok why don't the Asgardians turn and head for the Bifrost as per their original plan?
Book where humans were engineered with genes from animal species to survive hostile planets
What is Arya's weapon design?
Sci-Fi book where patients in a coma ward all live in a subconscious world linked together
Why did the rest of the Eastern Bloc not invade Yugoslavia?
3 doors, three guards, one stone
What is the meaning of the new sigil in Game of Thrones Season 8 intro?
In predicate logic, does existential quantification (∃) include universal quantification (∀), i.e. can 'some' imply 'all'?
Print a pdf file from a large pdf file
Output the ŋarâþ crîþ alphabet song without using (m)any letters
Simplicity of the roots of a minimal polynomial
Is the gradient of the self-intersections of a curve zero?
Announcing the arrival of Valued Associate #679: Cesar Manara
Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern)Monotonic curvature and self intersections.Parallel translation along a self intersecting curveSelf adjoint total covariant derivativeStokes Theorem for Manifolds with Self-IntersectionsIntersections of two curves in $mathbbR^n$Self intersections of a smooth closed curve being deformedProving that strictly monotonic curvature implies no self intersections (more specifically, using the following inequalities)Does an immersed curve in general position has finite self-intersections?Can we describe Injective and non-Injective functions through intersections?Problem understanding the gradient of a field.
$begingroup$
Suppose a curve with self-intersections can be described by $phi(x,y)=0$. Suppose the intersections are $T_i$, $i=1,2,...$ and the gradient $nabla phi$ at those intersections are well defined. Then is it true that $nablaphi(T_i)=0$ for all $i$? In other words, are the gradients at those intersections all zero?
real-analysis calculus geometry differential-geometry
$endgroup$
add a comment |
$begingroup$
Suppose a curve with self-intersections can be described by $phi(x,y)=0$. Suppose the intersections are $T_i$, $i=1,2,...$ and the gradient $nabla phi$ at those intersections are well defined. Then is it true that $nablaphi(T_i)=0$ for all $i$? In other words, are the gradients at those intersections all zero?
real-analysis calculus geometry differential-geometry
$endgroup$
add a comment |
$begingroup$
Suppose a curve with self-intersections can be described by $phi(x,y)=0$. Suppose the intersections are $T_i$, $i=1,2,...$ and the gradient $nabla phi$ at those intersections are well defined. Then is it true that $nablaphi(T_i)=0$ for all $i$? In other words, are the gradients at those intersections all zero?
real-analysis calculus geometry differential-geometry
$endgroup$
Suppose a curve with self-intersections can be described by $phi(x,y)=0$. Suppose the intersections are $T_i$, $i=1,2,...$ and the gradient $nabla phi$ at those intersections are well defined. Then is it true that $nablaphi(T_i)=0$ for all $i$? In other words, are the gradients at those intersections all zero?
real-analysis calculus geometry differential-geometry
real-analysis calculus geometry differential-geometry
edited Apr 9 at 17:04
Ernie060
2,940719
2,940719
asked Apr 9 at 15:50
winstonwinston
544418
544418
add a comment |
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
If we agree that $phi$ is continuously differentiable (so $nabla phi(x,y)$ is a continuous function of $x$ and $y$), then yes, this must be true.
The reason is that, if $nabla phi(x_0, y_0) neq 0$ for some $(x_0, y_0)$, then the implicit function theorem guarantees that (locally) we can write $y$ as a function of $x$ or $x$ as a function of $y$. However, at a self-intersection $T_i$, our curve fails the horizontal and vertical line tests, so we cannot express $x$ as a function of $y$ or $y$ as a function of $x$.
$endgroup$
add a comment |
$begingroup$
Assuming $phi(x,y)$ is continuously differentiable in a neighbourhood of $T_i$, yes, because otherwise you could use the Implicit Function Theorem to get a unique curve in a neighourhood of $T_i$ satisfying $phi(x,y) = 0$.
$endgroup$
add a comment |
Your Answer
StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "69"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);
else
createEditor();
);
function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);
);
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3181199%2fis-the-gradient-of-the-self-intersections-of-a-curve-zero%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
If we agree that $phi$ is continuously differentiable (so $nabla phi(x,y)$ is a continuous function of $x$ and $y$), then yes, this must be true.
The reason is that, if $nabla phi(x_0, y_0) neq 0$ for some $(x_0, y_0)$, then the implicit function theorem guarantees that (locally) we can write $y$ as a function of $x$ or $x$ as a function of $y$. However, at a self-intersection $T_i$, our curve fails the horizontal and vertical line tests, so we cannot express $x$ as a function of $y$ or $y$ as a function of $x$.
$endgroup$
add a comment |
$begingroup$
If we agree that $phi$ is continuously differentiable (so $nabla phi(x,y)$ is a continuous function of $x$ and $y$), then yes, this must be true.
The reason is that, if $nabla phi(x_0, y_0) neq 0$ for some $(x_0, y_0)$, then the implicit function theorem guarantees that (locally) we can write $y$ as a function of $x$ or $x$ as a function of $y$. However, at a self-intersection $T_i$, our curve fails the horizontal and vertical line tests, so we cannot express $x$ as a function of $y$ or $y$ as a function of $x$.
$endgroup$
add a comment |
$begingroup$
If we agree that $phi$ is continuously differentiable (so $nabla phi(x,y)$ is a continuous function of $x$ and $y$), then yes, this must be true.
The reason is that, if $nabla phi(x_0, y_0) neq 0$ for some $(x_0, y_0)$, then the implicit function theorem guarantees that (locally) we can write $y$ as a function of $x$ or $x$ as a function of $y$. However, at a self-intersection $T_i$, our curve fails the horizontal and vertical line tests, so we cannot express $x$ as a function of $y$ or $y$ as a function of $x$.
$endgroup$
If we agree that $phi$ is continuously differentiable (so $nabla phi(x,y)$ is a continuous function of $x$ and $y$), then yes, this must be true.
The reason is that, if $nabla phi(x_0, y_0) neq 0$ for some $(x_0, y_0)$, then the implicit function theorem guarantees that (locally) we can write $y$ as a function of $x$ or $x$ as a function of $y$. However, at a self-intersection $T_i$, our curve fails the horizontal and vertical line tests, so we cannot express $x$ as a function of $y$ or $y$ as a function of $x$.
answered Apr 9 at 16:27
StrantsStrants
5,89921736
5,89921736
add a comment |
add a comment |
$begingroup$
Assuming $phi(x,y)$ is continuously differentiable in a neighbourhood of $T_i$, yes, because otherwise you could use the Implicit Function Theorem to get a unique curve in a neighourhood of $T_i$ satisfying $phi(x,y) = 0$.
$endgroup$
add a comment |
$begingroup$
Assuming $phi(x,y)$ is continuously differentiable in a neighbourhood of $T_i$, yes, because otherwise you could use the Implicit Function Theorem to get a unique curve in a neighourhood of $T_i$ satisfying $phi(x,y) = 0$.
$endgroup$
add a comment |
$begingroup$
Assuming $phi(x,y)$ is continuously differentiable in a neighbourhood of $T_i$, yes, because otherwise you could use the Implicit Function Theorem to get a unique curve in a neighourhood of $T_i$ satisfying $phi(x,y) = 0$.
$endgroup$
Assuming $phi(x,y)$ is continuously differentiable in a neighbourhood of $T_i$, yes, because otherwise you could use the Implicit Function Theorem to get a unique curve in a neighourhood of $T_i$ satisfying $phi(x,y) = 0$.
answered Apr 9 at 16:27
Robert IsraelRobert Israel
332k23222479
332k23222479
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3181199%2fis-the-gradient-of-the-self-intersections-of-a-curve-zero%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown