Is the gradient of the self-intersections of a curve zero? Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern)Monotonic curvature and self intersections.Parallel translation along a self intersecting curveSelf adjoint total covariant derivativeStokes Theorem for Manifolds with Self-IntersectionsIntersections of two curves in $mathbbR^n$Self intersections of a smooth closed curve being deformedProving that strictly monotonic curvature implies no self intersections (more specifically, using the following inequalities)Does an immersed curve in general position has finite self-intersections?Can we describe Injective and non-Injective functions through intersections?Problem understanding the gradient of a field.

Use BFD on a Virtual-Template Interface

Why do people hide their license plates in the EU?

illegal generic type for instanceof when using local classes

Is there a (better) way to access $wpdb results?

What exactly is a "Meth" in Altered Carbon?

What does the word "veer" mean here?

How would the world control an invulnerable immortal mass murderer?

How does the particle を relate to the verb 行く in the structure「A を + B に行く」?

Single word antonym of "flightless"

Why is "Consequences inflicted." not a sentence?

Is it ethical to give a final exam after the professor has quit before teaching the remaining chapters of the course?

List *all* the tuples!

Why am I getting the error "non-boolean type specified in a context where a condition is expected" for this request?

At the end of Thor: Ragnarok why don't the Asgardians turn and head for the Bifrost as per their original plan?

Book where humans were engineered with genes from animal species to survive hostile planets

What is Arya's weapon design?

Sci-Fi book where patients in a coma ward all live in a subconscious world linked together

Why did the rest of the Eastern Bloc not invade Yugoslavia?

3 doors, three guards, one stone

What is the meaning of the new sigil in Game of Thrones Season 8 intro?

In predicate logic, does existential quantification (∃) include universal quantification (∀), i.e. can 'some' imply 'all'?

Print a pdf file from a large pdf file

Output the ŋarâþ crîþ alphabet song without using (m)any letters

Simplicity of the roots of a minimal polynomial



Is the gradient of the self-intersections of a curve zero?



Announcing the arrival of Valued Associate #679: Cesar Manara
Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern)Monotonic curvature and self intersections.Parallel translation along a self intersecting curveSelf adjoint total covariant derivativeStokes Theorem for Manifolds with Self-IntersectionsIntersections of two curves in $mathbbR^n$Self intersections of a smooth closed curve being deformedProving that strictly monotonic curvature implies no self intersections (more specifically, using the following inequalities)Does an immersed curve in general position has finite self-intersections?Can we describe Injective and non-Injective functions through intersections?Problem understanding the gradient of a field.










3












$begingroup$


Suppose a curve with self-intersections can be described by $phi(x,y)=0$. Suppose the intersections are $T_i$, $i=1,2,...$ and the gradient $nabla phi$ at those intersections are well defined. Then is it true that $nablaphi(T_i)=0$ for all $i$? In other words, are the gradients at those intersections all zero?










share|cite|improve this question











$endgroup$
















    3












    $begingroup$


    Suppose a curve with self-intersections can be described by $phi(x,y)=0$. Suppose the intersections are $T_i$, $i=1,2,...$ and the gradient $nabla phi$ at those intersections are well defined. Then is it true that $nablaphi(T_i)=0$ for all $i$? In other words, are the gradients at those intersections all zero?










    share|cite|improve this question











    $endgroup$














      3












      3








      3





      $begingroup$


      Suppose a curve with self-intersections can be described by $phi(x,y)=0$. Suppose the intersections are $T_i$, $i=1,2,...$ and the gradient $nabla phi$ at those intersections are well defined. Then is it true that $nablaphi(T_i)=0$ for all $i$? In other words, are the gradients at those intersections all zero?










      share|cite|improve this question











      $endgroup$




      Suppose a curve with self-intersections can be described by $phi(x,y)=0$. Suppose the intersections are $T_i$, $i=1,2,...$ and the gradient $nabla phi$ at those intersections are well defined. Then is it true that $nablaphi(T_i)=0$ for all $i$? In other words, are the gradients at those intersections all zero?







      real-analysis calculus geometry differential-geometry






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Apr 9 at 17:04









      Ernie060

      2,940719




      2,940719










      asked Apr 9 at 15:50









      winstonwinston

      544418




      544418




















          2 Answers
          2






          active

          oldest

          votes


















          2












          $begingroup$

          If we agree that $phi$ is continuously differentiable (so $nabla phi(x,y)$ is a continuous function of $x$ and $y$), then yes, this must be true.



          The reason is that, if $nabla phi(x_0, y_0) neq 0$ for some $(x_0, y_0)$, then the implicit function theorem guarantees that (locally) we can write $y$ as a function of $x$ or $x$ as a function of $y$. However, at a self-intersection $T_i$, our curve fails the horizontal and vertical line tests, so we cannot express $x$ as a function of $y$ or $y$ as a function of $x$.






          share|cite|improve this answer









          $endgroup$




















            6












            $begingroup$

            Assuming $phi(x,y)$ is continuously differentiable in a neighbourhood of $T_i$, yes, because otherwise you could use the Implicit Function Theorem to get a unique curve in a neighourhood of $T_i$ satisfying $phi(x,y) = 0$.






            share|cite|improve this answer









            $endgroup$













              Your Answer








              StackExchange.ready(function()
              var channelOptions =
              tags: "".split(" "),
              id: "69"
              ;
              initTagRenderer("".split(" "), "".split(" "), channelOptions);

              StackExchange.using("externalEditor", function()
              // Have to fire editor after snippets, if snippets enabled
              if (StackExchange.settings.snippets.snippetsEnabled)
              StackExchange.using("snippets", function()
              createEditor();
              );

              else
              createEditor();

              );

              function createEditor()
              StackExchange.prepareEditor(
              heartbeatType: 'answer',
              autoActivateHeartbeat: false,
              convertImagesToLinks: true,
              noModals: true,
              showLowRepImageUploadWarning: true,
              reputationToPostImages: 10,
              bindNavPrevention: true,
              postfix: "",
              imageUploader:
              brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
              contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
              allowUrls: true
              ,
              noCode: true, onDemand: true,
              discardSelector: ".discard-answer"
              ,immediatelyShowMarkdownHelp:true
              );



              );













              draft saved

              draft discarded


















              StackExchange.ready(
              function ()
              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3181199%2fis-the-gradient-of-the-self-intersections-of-a-curve-zero%23new-answer', 'question_page');

              );

              Post as a guest















              Required, but never shown

























              2 Answers
              2






              active

              oldest

              votes








              2 Answers
              2






              active

              oldest

              votes









              active

              oldest

              votes






              active

              oldest

              votes









              2












              $begingroup$

              If we agree that $phi$ is continuously differentiable (so $nabla phi(x,y)$ is a continuous function of $x$ and $y$), then yes, this must be true.



              The reason is that, if $nabla phi(x_0, y_0) neq 0$ for some $(x_0, y_0)$, then the implicit function theorem guarantees that (locally) we can write $y$ as a function of $x$ or $x$ as a function of $y$. However, at a self-intersection $T_i$, our curve fails the horizontal and vertical line tests, so we cannot express $x$ as a function of $y$ or $y$ as a function of $x$.






              share|cite|improve this answer









              $endgroup$

















                2












                $begingroup$

                If we agree that $phi$ is continuously differentiable (so $nabla phi(x,y)$ is a continuous function of $x$ and $y$), then yes, this must be true.



                The reason is that, if $nabla phi(x_0, y_0) neq 0$ for some $(x_0, y_0)$, then the implicit function theorem guarantees that (locally) we can write $y$ as a function of $x$ or $x$ as a function of $y$. However, at a self-intersection $T_i$, our curve fails the horizontal and vertical line tests, so we cannot express $x$ as a function of $y$ or $y$ as a function of $x$.






                share|cite|improve this answer









                $endgroup$















                  2












                  2








                  2





                  $begingroup$

                  If we agree that $phi$ is continuously differentiable (so $nabla phi(x,y)$ is a continuous function of $x$ and $y$), then yes, this must be true.



                  The reason is that, if $nabla phi(x_0, y_0) neq 0$ for some $(x_0, y_0)$, then the implicit function theorem guarantees that (locally) we can write $y$ as a function of $x$ or $x$ as a function of $y$. However, at a self-intersection $T_i$, our curve fails the horizontal and vertical line tests, so we cannot express $x$ as a function of $y$ or $y$ as a function of $x$.






                  share|cite|improve this answer









                  $endgroup$



                  If we agree that $phi$ is continuously differentiable (so $nabla phi(x,y)$ is a continuous function of $x$ and $y$), then yes, this must be true.



                  The reason is that, if $nabla phi(x_0, y_0) neq 0$ for some $(x_0, y_0)$, then the implicit function theorem guarantees that (locally) we can write $y$ as a function of $x$ or $x$ as a function of $y$. However, at a self-intersection $T_i$, our curve fails the horizontal and vertical line tests, so we cannot express $x$ as a function of $y$ or $y$ as a function of $x$.







                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered Apr 9 at 16:27









                  StrantsStrants

                  5,89921736




                  5,89921736





















                      6












                      $begingroup$

                      Assuming $phi(x,y)$ is continuously differentiable in a neighbourhood of $T_i$, yes, because otherwise you could use the Implicit Function Theorem to get a unique curve in a neighourhood of $T_i$ satisfying $phi(x,y) = 0$.






                      share|cite|improve this answer









                      $endgroup$

















                        6












                        $begingroup$

                        Assuming $phi(x,y)$ is continuously differentiable in a neighbourhood of $T_i$, yes, because otherwise you could use the Implicit Function Theorem to get a unique curve in a neighourhood of $T_i$ satisfying $phi(x,y) = 0$.






                        share|cite|improve this answer









                        $endgroup$















                          6












                          6








                          6





                          $begingroup$

                          Assuming $phi(x,y)$ is continuously differentiable in a neighbourhood of $T_i$, yes, because otherwise you could use the Implicit Function Theorem to get a unique curve in a neighourhood of $T_i$ satisfying $phi(x,y) = 0$.






                          share|cite|improve this answer









                          $endgroup$



                          Assuming $phi(x,y)$ is continuously differentiable in a neighbourhood of $T_i$, yes, because otherwise you could use the Implicit Function Theorem to get a unique curve in a neighourhood of $T_i$ satisfying $phi(x,y) = 0$.







                          share|cite|improve this answer












                          share|cite|improve this answer



                          share|cite|improve this answer










                          answered Apr 9 at 16:27









                          Robert IsraelRobert Israel

                          332k23222479




                          332k23222479



























                              draft saved

                              draft discarded
















































                              Thanks for contributing an answer to Mathematics Stack Exchange!


                              • Please be sure to answer the question. Provide details and share your research!

                              But avoid


                              • Asking for help, clarification, or responding to other answers.

                              • Making statements based on opinion; back them up with references or personal experience.

                              Use MathJax to format equations. MathJax reference.


                              To learn more, see our tips on writing great answers.




                              draft saved


                              draft discarded














                              StackExchange.ready(
                              function ()
                              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3181199%2fis-the-gradient-of-the-self-intersections-of-a-curve-zero%23new-answer', 'question_page');

                              );

                              Post as a guest















                              Required, but never shown





















































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown

































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown







                              Popular posts from this blog

                              រឿង រ៉ូមេអូ និង ហ្ស៊ុយលីយេ សង្ខេបរឿង តួអង្គ បញ្ជីណែនាំ

                              QGIS export composer to PDF scale the map [closed] Planned maintenance scheduled April 23, 2019 at 23:30 UTC (7:30pm US/Eastern) Announcing the arrival of Valued Associate #679: Cesar Manara Unicorn Meta Zoo #1: Why another podcast?Print Composer QGIS 2.6, how to export image?QGIS 2.8.1 print composer won't export all OpenCycleMap base layer tilesSave Print/Map QGIS composer view as PNG/PDF using Python (without changing anything in visible layout)?Export QGIS Print Composer PDF with searchable text labelsQGIS Print Composer does not change from landscape to portrait orientation?How can I avoid map size and scale changes in print composer?Fuzzy PDF export in QGIS running on macSierra OSExport the legend into its 100% size using Print ComposerScale-dependent rendering in QGIS PDF output

                              PDF-ში გადმოწერა სანავიგაციო მენიუproject page