Is every set a filtered colimit of finite sets? Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern)On colim $Hom_A-alg(B, C_i)$Why is the colimit over this filtered index category the object $F(i_0)$?A filtered poset and a filtered diagram (category)The colimit of all finite-dimensional vector spacesWhy do finite limits commute with filtered colimits in the category of abelian groups?Colimit of collection of finite setsExpressing Representation of a Colimit as a LimitFiltered vs Directed colimitsNot-quite-preservation of not-quite-filtered colimitsAbout a specific step in a proof of the fact that filtered colimits and finite limits commute in $mathbfSet$
I'm thinking of a number
Statistical model of ligand substitution
Why does tar appear to skip file contents when output file is /dev/null?
When communicating altitude with a '9' in it, should it be pronounced "nine hundred" or "niner hundred"?
What computer would be fastest for Mathematica Home Edition?
When is phishing education going too far?
Estimated State payment too big --> money back; + 2018 Tax Reform
Stars Make Stars
3 doors, three guards, one stone
Array/tabular for long multiplication
What LEGO pieces have "real-world" functionality?
How do I automatically answer y in bash script?
Limit for e and 1/e
Are my PIs rude or am I just being too sensitive?
What did Darwin mean by 'squib' here?
Unable to start mainnet node docker container
Is there folklore associating late breastfeeding with low intelligence and/or gullibility?
Can I throw a sword that doesn't have the Thrown property at someone?
Does a C shift expression have unsigned type? Why would Splint warn about a right-shift?
Cold is to Refrigerator as warm is to?
Simulating Exploding Dice
How to pour concrete for curved walkway to prevent cracking?
Need a suitable toxic chemical for a murder plot in my novel
What are the performance impacts of 'functional' Rust?
Is every set a filtered colimit of finite sets?
Announcing the arrival of Valued Associate #679: Cesar Manara
Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern)On colim $Hom_A-alg(B, C_i)$Why is the colimit over this filtered index category the object $F(i_0)$?A filtered poset and a filtered diagram (category)The colimit of all finite-dimensional vector spacesWhy do finite limits commute with filtered colimits in the category of abelian groups?Colimit of collection of finite setsExpressing Representation of a Colimit as a LimitFiltered vs Directed colimitsNot-quite-preservation of not-quite-filtered colimitsAbout a specific step in a proof of the fact that filtered colimits and finite limits commute in $mathbfSet$
$begingroup$
Is the following statement correct in the category of sets?
Let $X$ be any set. Then there exists a filtered small category $I$ and a functor $F:Ito mathrmSet$ such that for all $iin I$ the set $F(i)$ is finite, and such that
$$
X ; = ; mathrmcolim_iin I F(i) .
$$
Are there references on results of this type in the literature?
reference-request category-theory limits-colimits
$endgroup$
add a comment |
$begingroup$
Is the following statement correct in the category of sets?
Let $X$ be any set. Then there exists a filtered small category $I$ and a functor $F:Ito mathrmSet$ such that for all $iin I$ the set $F(i)$ is finite, and such that
$$
X ; = ; mathrmcolim_iin I F(i) .
$$
Are there references on results of this type in the literature?
reference-request category-theory limits-colimits
$endgroup$
1
$begingroup$
One way to generalize this is the notion of a locally finitely presentable category.
$endgroup$
– Derek Elkins
Apr 8 at 12:35
add a comment |
$begingroup$
Is the following statement correct in the category of sets?
Let $X$ be any set. Then there exists a filtered small category $I$ and a functor $F:Ito mathrmSet$ such that for all $iin I$ the set $F(i)$ is finite, and such that
$$
X ; = ; mathrmcolim_iin I F(i) .
$$
Are there references on results of this type in the literature?
reference-request category-theory limits-colimits
$endgroup$
Is the following statement correct in the category of sets?
Let $X$ be any set. Then there exists a filtered small category $I$ and a functor $F:Ito mathrmSet$ such that for all $iin I$ the set $F(i)$ is finite, and such that
$$
X ; = ; mathrmcolim_iin I F(i) .
$$
Are there references on results of this type in the literature?
reference-request category-theory limits-colimits
reference-request category-theory limits-colimits
edited Apr 8 at 19:10
Andrés E. Caicedo
66k8160252
66k8160252
asked Apr 8 at 12:29
geodudegeodude
4,1911344
4,1911344
1
$begingroup$
One way to generalize this is the notion of a locally finitely presentable category.
$endgroup$
– Derek Elkins
Apr 8 at 12:35
add a comment |
1
$begingroup$
One way to generalize this is the notion of a locally finitely presentable category.
$endgroup$
– Derek Elkins
Apr 8 at 12:35
1
1
$begingroup$
One way to generalize this is the notion of a locally finitely presentable category.
$endgroup$
– Derek Elkins
Apr 8 at 12:35
$begingroup$
One way to generalize this is the notion of a locally finitely presentable category.
$endgroup$
– Derek Elkins
Apr 8 at 12:35
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
The answer is yes: every set is the union of its finite subsets.
So take $I = P_textfinite(X)$ with as morphisms the inclusion maps, and $F : I to textSet$ the inclusion.
$endgroup$
add a comment |
$begingroup$
One answer already mentions the diagram of finite subsets of $X$. You would have to check that taking the union of this system actually is the colimit (which is an easy exercise).
Since you asked for a reference, Locally Presentable and Accessible Categories by J. Adámek and J. Rosický is a great book on this kind of stuff. In particular example 1.2(1) already mentions the diagram of finite subsets.
New contributor
$endgroup$
add a comment |
Your Answer
StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "69"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);
else
createEditor();
);
function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);
);
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3179574%2fis-every-set-a-filtered-colimit-of-finite-sets%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
The answer is yes: every set is the union of its finite subsets.
So take $I = P_textfinite(X)$ with as morphisms the inclusion maps, and $F : I to textSet$ the inclusion.
$endgroup$
add a comment |
$begingroup$
The answer is yes: every set is the union of its finite subsets.
So take $I = P_textfinite(X)$ with as morphisms the inclusion maps, and $F : I to textSet$ the inclusion.
$endgroup$
add a comment |
$begingroup$
The answer is yes: every set is the union of its finite subsets.
So take $I = P_textfinite(X)$ with as morphisms the inclusion maps, and $F : I to textSet$ the inclusion.
$endgroup$
The answer is yes: every set is the union of its finite subsets.
So take $I = P_textfinite(X)$ with as morphisms the inclusion maps, and $F : I to textSet$ the inclusion.
answered Apr 8 at 12:31
rabotarabota
14.6k32886
14.6k32886
add a comment |
add a comment |
$begingroup$
One answer already mentions the diagram of finite subsets of $X$. You would have to check that taking the union of this system actually is the colimit (which is an easy exercise).
Since you asked for a reference, Locally Presentable and Accessible Categories by J. Adámek and J. Rosický is a great book on this kind of stuff. In particular example 1.2(1) already mentions the diagram of finite subsets.
New contributor
$endgroup$
add a comment |
$begingroup$
One answer already mentions the diagram of finite subsets of $X$. You would have to check that taking the union of this system actually is the colimit (which is an easy exercise).
Since you asked for a reference, Locally Presentable and Accessible Categories by J. Adámek and J. Rosický is a great book on this kind of stuff. In particular example 1.2(1) already mentions the diagram of finite subsets.
New contributor
$endgroup$
add a comment |
$begingroup$
One answer already mentions the diagram of finite subsets of $X$. You would have to check that taking the union of this system actually is the colimit (which is an easy exercise).
Since you asked for a reference, Locally Presentable and Accessible Categories by J. Adámek and J. Rosický is a great book on this kind of stuff. In particular example 1.2(1) already mentions the diagram of finite subsets.
New contributor
$endgroup$
One answer already mentions the diagram of finite subsets of $X$. You would have to check that taking the union of this system actually is the colimit (which is an easy exercise).
Since you asked for a reference, Locally Presentable and Accessible Categories by J. Adámek and J. Rosický is a great book on this kind of stuff. In particular example 1.2(1) already mentions the diagram of finite subsets.
New contributor
New contributor
answered Apr 8 at 12:40
Mark KamsmaMark Kamsma
3616
3616
New contributor
New contributor
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3179574%2fis-every-set-a-filtered-colimit-of-finite-sets%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
$begingroup$
One way to generalize this is the notion of a locally finitely presentable category.
$endgroup$
– Derek Elkins
Apr 8 at 12:35