How to find the determinant of this matrix? (A spherical-Cartesian transformation Jacobian matrix) Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern)How to compute the following JacobianCalculating the Jacobian of inverse functionsMatrix calculation with sinusoidsUsing the Jacobian matrix to find surface area without a change of basis.Transforming vector field into spherical coordinates. Why and how does this method work?Compute the determinant of circulant matrix with entries $cos jtheta$Find the rotation/reflection angle for orthogonal matrix AJacobian matrix vs. Transformation matrixFurthest point in direction ellipsoid with Newton's methodCalculate the determinant of this $5 times 5$ matrixWhat is the correct matrix form for transforming spherical coordinate to Cartesian?
How does modal jazz use chord progressions?
Does a C shift expression have unsigned type? Why would Splint warn about a right-shift?
Direct Experience of Meditation
Can the prologue be the backstory of your main character?
I'm having difficulty getting my players to do stuff in a sandbox campaign
Am I ethically obligated to go into work on an off day if the reason is sudden?
How did the aliens keep their waters separated?
How to select 3,000 out of 10,000 files in file manager?
If A makes B more likely then B makes A more likely"
Did the new image of black hole confirm the general theory of relativity?
How is simplicity better than precision and clarity in prose?
What are the performance impacts of 'functional' Rust?
Autumning in love
How do you clear the ApexPages.getMessages() collection in a test?
Why is there no army of Iron-Mans in the MCU?
What's the difference between (size_t)-1 and ~0?
What items from the Roman-age tech-level could be used to deter all creatures from entering a small area?
Are my PIs rude or am I just being too sensitive?
Working around an AWS network ACL rule limit
Why don't the Weasley twins use magic outside of school if the Trace can only find the location of spells cast?
What would be Julian Assange's expected punishment, on the current English criminal law?
Limit for e and 1/e
Problem when applying foreach loop
Strange behaviour of Check
How to find the determinant of this matrix? (A spherical-Cartesian transformation Jacobian matrix)
Announcing the arrival of Valued Associate #679: Cesar Manara
Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern)How to compute the following JacobianCalculating the Jacobian of inverse functionsMatrix calculation with sinusoidsUsing the Jacobian matrix to find surface area without a change of basis.Transforming vector field into spherical coordinates. Why and how does this method work?Compute the determinant of circulant matrix with entries $cos jtheta$Find the rotation/reflection angle for orthogonal matrix AJacobian matrix vs. Transformation matrixFurthest point in direction ellipsoid with Newton's methodCalculate the determinant of this $5 times 5$ matrixWhat is the correct matrix form for transforming spherical coordinate to Cartesian?
$begingroup$
I meet a difficult determinant question as the followings:
$$
textMatrix A is given as:
$$
$$
A=beginbmatrixfracpartial xpartial r&fracpartial xpartialtheta&fracpartial xpartialphi\fracpartial ypartial r&fracpartial ypartialtheta&fracpartial ypartialphi\fracpartial zpartial r&fracpartial zpartialtheta&fracpartial zpartialphiendbmatrix
$$
$$
textwhere x=rsinthetacosphitext, y=rsinthetasinphitext, and z=rcostheta.text Find determinants det(A)text, det(A^-1)text, and det(A^2).
$$
I tried to simplify it, but just got:
$$
A=beginbmatrixsinthetacosphi&rcosthetacosphi&-rsinthetasinphi\sinthetasinphi&rcosthetasinphi&rsinthetacosphi\costheta&-rsintheta&0endbmatrix
$$
Because it is wired, I have also searched the Internet. But till now all I know is that this is just a spherical-Cartesian transformation formula using Jacobian matrix. (Maybe we can make a breakthough here?)
I can only solve $det(A)$ by directly calculating it, $det(A)=r^2sintheta$ .
However, I think it is still hard to find the inverse matrix, needless to say the huge calculation to get $A^2$. As I think, there must be some ways to simplify it.
Could anyone kindly teach me that whether there is any way to simplify $A$, so as to calculate the determinant?Thank you!
linear-algebra matrices determinant
New contributor
$endgroup$
add a comment |
$begingroup$
I meet a difficult determinant question as the followings:
$$
textMatrix A is given as:
$$
$$
A=beginbmatrixfracpartial xpartial r&fracpartial xpartialtheta&fracpartial xpartialphi\fracpartial ypartial r&fracpartial ypartialtheta&fracpartial ypartialphi\fracpartial zpartial r&fracpartial zpartialtheta&fracpartial zpartialphiendbmatrix
$$
$$
textwhere x=rsinthetacosphitext, y=rsinthetasinphitext, and z=rcostheta.text Find determinants det(A)text, det(A^-1)text, and det(A^2).
$$
I tried to simplify it, but just got:
$$
A=beginbmatrixsinthetacosphi&rcosthetacosphi&-rsinthetasinphi\sinthetasinphi&rcosthetasinphi&rsinthetacosphi\costheta&-rsintheta&0endbmatrix
$$
Because it is wired, I have also searched the Internet. But till now all I know is that this is just a spherical-Cartesian transformation formula using Jacobian matrix. (Maybe we can make a breakthough here?)
I can only solve $det(A)$ by directly calculating it, $det(A)=r^2sintheta$ .
However, I think it is still hard to find the inverse matrix, needless to say the huge calculation to get $A^2$. As I think, there must be some ways to simplify it.
Could anyone kindly teach me that whether there is any way to simplify $A$, so as to calculate the determinant?Thank you!
linear-algebra matrices determinant
New contributor
$endgroup$
$begingroup$
Why can't you "solve" (=calculate?) $det A$? It's bare for calculation.
$endgroup$
– Saucy O'Path
Apr 8 at 11:03
$begingroup$
Thank you @Saucy O'Path, it is true that we just need to calculate, then we could get det(A)=r^2sinθ. I initially thought that maybe we could simplify A by add/sub the row/cow of the matrix to make things easier......
$endgroup$
– Peter Nova
Apr 8 at 11:26
$begingroup$
Nah, it's largely a matter of grouping all the $sin^2+cos^2$ that appear when you make the products.
$endgroup$
– Saucy O'Path
Apr 8 at 11:34
$begingroup$
Of course you can calculate the determinant by reducing it using properties of determinant (like this for example). This is a standard result.
$endgroup$
– StubbornAtom
Apr 8 at 12:20
add a comment |
$begingroup$
I meet a difficult determinant question as the followings:
$$
textMatrix A is given as:
$$
$$
A=beginbmatrixfracpartial xpartial r&fracpartial xpartialtheta&fracpartial xpartialphi\fracpartial ypartial r&fracpartial ypartialtheta&fracpartial ypartialphi\fracpartial zpartial r&fracpartial zpartialtheta&fracpartial zpartialphiendbmatrix
$$
$$
textwhere x=rsinthetacosphitext, y=rsinthetasinphitext, and z=rcostheta.text Find determinants det(A)text, det(A^-1)text, and det(A^2).
$$
I tried to simplify it, but just got:
$$
A=beginbmatrixsinthetacosphi&rcosthetacosphi&-rsinthetasinphi\sinthetasinphi&rcosthetasinphi&rsinthetacosphi\costheta&-rsintheta&0endbmatrix
$$
Because it is wired, I have also searched the Internet. But till now all I know is that this is just a spherical-Cartesian transformation formula using Jacobian matrix. (Maybe we can make a breakthough here?)
I can only solve $det(A)$ by directly calculating it, $det(A)=r^2sintheta$ .
However, I think it is still hard to find the inverse matrix, needless to say the huge calculation to get $A^2$. As I think, there must be some ways to simplify it.
Could anyone kindly teach me that whether there is any way to simplify $A$, so as to calculate the determinant?Thank you!
linear-algebra matrices determinant
New contributor
$endgroup$
I meet a difficult determinant question as the followings:
$$
textMatrix A is given as:
$$
$$
A=beginbmatrixfracpartial xpartial r&fracpartial xpartialtheta&fracpartial xpartialphi\fracpartial ypartial r&fracpartial ypartialtheta&fracpartial ypartialphi\fracpartial zpartial r&fracpartial zpartialtheta&fracpartial zpartialphiendbmatrix
$$
$$
textwhere x=rsinthetacosphitext, y=rsinthetasinphitext, and z=rcostheta.text Find determinants det(A)text, det(A^-1)text, and det(A^2).
$$
I tried to simplify it, but just got:
$$
A=beginbmatrixsinthetacosphi&rcosthetacosphi&-rsinthetasinphi\sinthetasinphi&rcosthetasinphi&rsinthetacosphi\costheta&-rsintheta&0endbmatrix
$$
Because it is wired, I have also searched the Internet. But till now all I know is that this is just a spherical-Cartesian transformation formula using Jacobian matrix. (Maybe we can make a breakthough here?)
I can only solve $det(A)$ by directly calculating it, $det(A)=r^2sintheta$ .
However, I think it is still hard to find the inverse matrix, needless to say the huge calculation to get $A^2$. As I think, there must be some ways to simplify it.
Could anyone kindly teach me that whether there is any way to simplify $A$, so as to calculate the determinant?Thank you!
linear-algebra matrices determinant
linear-algebra matrices determinant
New contributor
New contributor
edited Apr 8 at 11:35
Peter Nova
New contributor
asked Apr 8 at 10:58
Peter NovaPeter Nova
284
284
New contributor
New contributor
$begingroup$
Why can't you "solve" (=calculate?) $det A$? It's bare for calculation.
$endgroup$
– Saucy O'Path
Apr 8 at 11:03
$begingroup$
Thank you @Saucy O'Path, it is true that we just need to calculate, then we could get det(A)=r^2sinθ. I initially thought that maybe we could simplify A by add/sub the row/cow of the matrix to make things easier......
$endgroup$
– Peter Nova
Apr 8 at 11:26
$begingroup$
Nah, it's largely a matter of grouping all the $sin^2+cos^2$ that appear when you make the products.
$endgroup$
– Saucy O'Path
Apr 8 at 11:34
$begingroup$
Of course you can calculate the determinant by reducing it using properties of determinant (like this for example). This is a standard result.
$endgroup$
– StubbornAtom
Apr 8 at 12:20
add a comment |
$begingroup$
Why can't you "solve" (=calculate?) $det A$? It's bare for calculation.
$endgroup$
– Saucy O'Path
Apr 8 at 11:03
$begingroup$
Thank you @Saucy O'Path, it is true that we just need to calculate, then we could get det(A)=r^2sinθ. I initially thought that maybe we could simplify A by add/sub the row/cow of the matrix to make things easier......
$endgroup$
– Peter Nova
Apr 8 at 11:26
$begingroup$
Nah, it's largely a matter of grouping all the $sin^2+cos^2$ that appear when you make the products.
$endgroup$
– Saucy O'Path
Apr 8 at 11:34
$begingroup$
Of course you can calculate the determinant by reducing it using properties of determinant (like this for example). This is a standard result.
$endgroup$
– StubbornAtom
Apr 8 at 12:20
$begingroup$
Why can't you "solve" (=calculate?) $det A$? It's bare for calculation.
$endgroup$
– Saucy O'Path
Apr 8 at 11:03
$begingroup$
Why can't you "solve" (=calculate?) $det A$? It's bare for calculation.
$endgroup$
– Saucy O'Path
Apr 8 at 11:03
$begingroup$
Thank you @Saucy O'Path, it is true that we just need to calculate, then we could get det(A)=r^2sinθ. I initially thought that maybe we could simplify A by add/sub the row/cow of the matrix to make things easier......
$endgroup$
– Peter Nova
Apr 8 at 11:26
$begingroup$
Thank you @Saucy O'Path, it is true that we just need to calculate, then we could get det(A)=r^2sinθ. I initially thought that maybe we could simplify A by add/sub the row/cow of the matrix to make things easier......
$endgroup$
– Peter Nova
Apr 8 at 11:26
$begingroup$
Nah, it's largely a matter of grouping all the $sin^2+cos^2$ that appear when you make the products.
$endgroup$
– Saucy O'Path
Apr 8 at 11:34
$begingroup$
Nah, it's largely a matter of grouping all the $sin^2+cos^2$ that appear when you make the products.
$endgroup$
– Saucy O'Path
Apr 8 at 11:34
$begingroup$
Of course you can calculate the determinant by reducing it using properties of determinant (like this for example). This is a standard result.
$endgroup$
– StubbornAtom
Apr 8 at 12:20
$begingroup$
Of course you can calculate the determinant by reducing it using properties of determinant (like this for example). This is a standard result.
$endgroup$
– StubbornAtom
Apr 8 at 12:20
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
By using the Rule of Sarrus,
$$beginalign
det(A)&=(sinthetacosphi)(rcosthetasinphi)(0)\
&,,,+(sinthetasinphi)(-rsintheta)(-rsinthetasinphi)\
&,,,+(costheta)(rcosthetacosphi)(rsinthetacosphi)\
&,,,-(-rsinthetasinphi)(rcosthetasinphi)(costheta)\
&,,,-(rsinthetacosphi)(-rsintheta)(sinthetacosphi)\
&,,,-(0)(rcosthetacosphi)(sinthetasinphi)\
&=0+r^2sin^3thetasin^2phi+r^2sinthetacos^2thetacos^2phi+r^2sinthetasin^2phicos^2theta+r^2sin^3thetacos^2phi-0\
&=r^2sin^3theta(sin^2phi+cos^2phi)+r^2sinthetacos^2theta(sin^2phi+cos^2phi)\
&=r^2sin^3theta+r^2sinthetacos^2theta\
&=r^2sintheta(sin^2theta+cos^2theta)\
&boxed=r^2sintheta\
endalign$$
Now in order to find $det(A^-1)$ and $det(A^2)$ we can use the fact that $det(AB)=det(A)cdotdet(B)$ to get
$$det(I)=det(AA^-1)=det(A)det(A^-1)=r^2sinthetadet(A^-1)=1$$
$$therefore det(A^-1)=frac1r^2sintheta$$
$$det(A^2)=(det(A))^2=(r^2sintheta)^2=r^4sin^2theta$$
$endgroup$
$begingroup$
Thank you so much! I thought too much on determinant calculation and simplification, but ignored the most important thing -- A is also a matrix. Thank you! I will remember this lesson.
$endgroup$
– Peter Nova
Apr 8 at 12:03
add a comment |
$begingroup$
If you were really clever (e.g., if you already knew the answer, or thought hard about what a Jacobian in a different coordinate system represents), you could compute $det(A)$ by computing $det(B)det(A) = det (BA)$, where $det B$ was particularly easy.
Picking
$$
B = pmatrixcos phi & sin phi & 0 \
-sin phi & cos phi, & 0 \
0 & 0 & 1
$$
generates a matrix $BA$ whose form is rather simpler than that of $A$ (there's no $phi$, for instance!), while $det B$ is evidently $1$.
But I thing the question-asker's intent here is that you're just supposed to do the algebra and practice trig simplification.
$endgroup$
$begingroup$
Yeah... I just only thought about the calculation method from a determinant prospect, just want to somehow simplify it. But I ignored A is also a matrix... Thank you for your answer too! (But I think maybe I cannot think up this B immediately =-O , I will fight in the future study)
$endgroup$
– Peter Nova
Apr 8 at 12:08
add a comment |
Your Answer
StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "69"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);
else
createEditor();
);
function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);
);
Peter Nova is a new contributor. Be nice, and check out our Code of Conduct.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3179472%2fhow-to-find-the-determinant-of-this-matrix-a-spherical-cartesian-transformatio%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
By using the Rule of Sarrus,
$$beginalign
det(A)&=(sinthetacosphi)(rcosthetasinphi)(0)\
&,,,+(sinthetasinphi)(-rsintheta)(-rsinthetasinphi)\
&,,,+(costheta)(rcosthetacosphi)(rsinthetacosphi)\
&,,,-(-rsinthetasinphi)(rcosthetasinphi)(costheta)\
&,,,-(rsinthetacosphi)(-rsintheta)(sinthetacosphi)\
&,,,-(0)(rcosthetacosphi)(sinthetasinphi)\
&=0+r^2sin^3thetasin^2phi+r^2sinthetacos^2thetacos^2phi+r^2sinthetasin^2phicos^2theta+r^2sin^3thetacos^2phi-0\
&=r^2sin^3theta(sin^2phi+cos^2phi)+r^2sinthetacos^2theta(sin^2phi+cos^2phi)\
&=r^2sin^3theta+r^2sinthetacos^2theta\
&=r^2sintheta(sin^2theta+cos^2theta)\
&boxed=r^2sintheta\
endalign$$
Now in order to find $det(A^-1)$ and $det(A^2)$ we can use the fact that $det(AB)=det(A)cdotdet(B)$ to get
$$det(I)=det(AA^-1)=det(A)det(A^-1)=r^2sinthetadet(A^-1)=1$$
$$therefore det(A^-1)=frac1r^2sintheta$$
$$det(A^2)=(det(A))^2=(r^2sintheta)^2=r^4sin^2theta$$
$endgroup$
$begingroup$
Thank you so much! I thought too much on determinant calculation and simplification, but ignored the most important thing -- A is also a matrix. Thank you! I will remember this lesson.
$endgroup$
– Peter Nova
Apr 8 at 12:03
add a comment |
$begingroup$
By using the Rule of Sarrus,
$$beginalign
det(A)&=(sinthetacosphi)(rcosthetasinphi)(0)\
&,,,+(sinthetasinphi)(-rsintheta)(-rsinthetasinphi)\
&,,,+(costheta)(rcosthetacosphi)(rsinthetacosphi)\
&,,,-(-rsinthetasinphi)(rcosthetasinphi)(costheta)\
&,,,-(rsinthetacosphi)(-rsintheta)(sinthetacosphi)\
&,,,-(0)(rcosthetacosphi)(sinthetasinphi)\
&=0+r^2sin^3thetasin^2phi+r^2sinthetacos^2thetacos^2phi+r^2sinthetasin^2phicos^2theta+r^2sin^3thetacos^2phi-0\
&=r^2sin^3theta(sin^2phi+cos^2phi)+r^2sinthetacos^2theta(sin^2phi+cos^2phi)\
&=r^2sin^3theta+r^2sinthetacos^2theta\
&=r^2sintheta(sin^2theta+cos^2theta)\
&boxed=r^2sintheta\
endalign$$
Now in order to find $det(A^-1)$ and $det(A^2)$ we can use the fact that $det(AB)=det(A)cdotdet(B)$ to get
$$det(I)=det(AA^-1)=det(A)det(A^-1)=r^2sinthetadet(A^-1)=1$$
$$therefore det(A^-1)=frac1r^2sintheta$$
$$det(A^2)=(det(A))^2=(r^2sintheta)^2=r^4sin^2theta$$
$endgroup$
$begingroup$
Thank you so much! I thought too much on determinant calculation and simplification, but ignored the most important thing -- A is also a matrix. Thank you! I will remember this lesson.
$endgroup$
– Peter Nova
Apr 8 at 12:03
add a comment |
$begingroup$
By using the Rule of Sarrus,
$$beginalign
det(A)&=(sinthetacosphi)(rcosthetasinphi)(0)\
&,,,+(sinthetasinphi)(-rsintheta)(-rsinthetasinphi)\
&,,,+(costheta)(rcosthetacosphi)(rsinthetacosphi)\
&,,,-(-rsinthetasinphi)(rcosthetasinphi)(costheta)\
&,,,-(rsinthetacosphi)(-rsintheta)(sinthetacosphi)\
&,,,-(0)(rcosthetacosphi)(sinthetasinphi)\
&=0+r^2sin^3thetasin^2phi+r^2sinthetacos^2thetacos^2phi+r^2sinthetasin^2phicos^2theta+r^2sin^3thetacos^2phi-0\
&=r^2sin^3theta(sin^2phi+cos^2phi)+r^2sinthetacos^2theta(sin^2phi+cos^2phi)\
&=r^2sin^3theta+r^2sinthetacos^2theta\
&=r^2sintheta(sin^2theta+cos^2theta)\
&boxed=r^2sintheta\
endalign$$
Now in order to find $det(A^-1)$ and $det(A^2)$ we can use the fact that $det(AB)=det(A)cdotdet(B)$ to get
$$det(I)=det(AA^-1)=det(A)det(A^-1)=r^2sinthetadet(A^-1)=1$$
$$therefore det(A^-1)=frac1r^2sintheta$$
$$det(A^2)=(det(A))^2=(r^2sintheta)^2=r^4sin^2theta$$
$endgroup$
By using the Rule of Sarrus,
$$beginalign
det(A)&=(sinthetacosphi)(rcosthetasinphi)(0)\
&,,,+(sinthetasinphi)(-rsintheta)(-rsinthetasinphi)\
&,,,+(costheta)(rcosthetacosphi)(rsinthetacosphi)\
&,,,-(-rsinthetasinphi)(rcosthetasinphi)(costheta)\
&,,,-(rsinthetacosphi)(-rsintheta)(sinthetacosphi)\
&,,,-(0)(rcosthetacosphi)(sinthetasinphi)\
&=0+r^2sin^3thetasin^2phi+r^2sinthetacos^2thetacos^2phi+r^2sinthetasin^2phicos^2theta+r^2sin^3thetacos^2phi-0\
&=r^2sin^3theta(sin^2phi+cos^2phi)+r^2sinthetacos^2theta(sin^2phi+cos^2phi)\
&=r^2sin^3theta+r^2sinthetacos^2theta\
&=r^2sintheta(sin^2theta+cos^2theta)\
&boxed=r^2sintheta\
endalign$$
Now in order to find $det(A^-1)$ and $det(A^2)$ we can use the fact that $det(AB)=det(A)cdotdet(B)$ to get
$$det(I)=det(AA^-1)=det(A)det(A^-1)=r^2sinthetadet(A^-1)=1$$
$$therefore det(A^-1)=frac1r^2sintheta$$
$$det(A^2)=(det(A))^2=(r^2sintheta)^2=r^4sin^2theta$$
answered Apr 8 at 11:40
Peter ForemanPeter Foreman
7,3181319
7,3181319
$begingroup$
Thank you so much! I thought too much on determinant calculation and simplification, but ignored the most important thing -- A is also a matrix. Thank you! I will remember this lesson.
$endgroup$
– Peter Nova
Apr 8 at 12:03
add a comment |
$begingroup$
Thank you so much! I thought too much on determinant calculation and simplification, but ignored the most important thing -- A is also a matrix. Thank you! I will remember this lesson.
$endgroup$
– Peter Nova
Apr 8 at 12:03
$begingroup$
Thank you so much! I thought too much on determinant calculation and simplification, but ignored the most important thing -- A is also a matrix. Thank you! I will remember this lesson.
$endgroup$
– Peter Nova
Apr 8 at 12:03
$begingroup$
Thank you so much! I thought too much on determinant calculation and simplification, but ignored the most important thing -- A is also a matrix. Thank you! I will remember this lesson.
$endgroup$
– Peter Nova
Apr 8 at 12:03
add a comment |
$begingroup$
If you were really clever (e.g., if you already knew the answer, or thought hard about what a Jacobian in a different coordinate system represents), you could compute $det(A)$ by computing $det(B)det(A) = det (BA)$, where $det B$ was particularly easy.
Picking
$$
B = pmatrixcos phi & sin phi & 0 \
-sin phi & cos phi, & 0 \
0 & 0 & 1
$$
generates a matrix $BA$ whose form is rather simpler than that of $A$ (there's no $phi$, for instance!), while $det B$ is evidently $1$.
But I thing the question-asker's intent here is that you're just supposed to do the algebra and practice trig simplification.
$endgroup$
$begingroup$
Yeah... I just only thought about the calculation method from a determinant prospect, just want to somehow simplify it. But I ignored A is also a matrix... Thank you for your answer too! (But I think maybe I cannot think up this B immediately =-O , I will fight in the future study)
$endgroup$
– Peter Nova
Apr 8 at 12:08
add a comment |
$begingroup$
If you were really clever (e.g., if you already knew the answer, or thought hard about what a Jacobian in a different coordinate system represents), you could compute $det(A)$ by computing $det(B)det(A) = det (BA)$, where $det B$ was particularly easy.
Picking
$$
B = pmatrixcos phi & sin phi & 0 \
-sin phi & cos phi, & 0 \
0 & 0 & 1
$$
generates a matrix $BA$ whose form is rather simpler than that of $A$ (there's no $phi$, for instance!), while $det B$ is evidently $1$.
But I thing the question-asker's intent here is that you're just supposed to do the algebra and practice trig simplification.
$endgroup$
$begingroup$
Yeah... I just only thought about the calculation method from a determinant prospect, just want to somehow simplify it. But I ignored A is also a matrix... Thank you for your answer too! (But I think maybe I cannot think up this B immediately =-O , I will fight in the future study)
$endgroup$
– Peter Nova
Apr 8 at 12:08
add a comment |
$begingroup$
If you were really clever (e.g., if you already knew the answer, or thought hard about what a Jacobian in a different coordinate system represents), you could compute $det(A)$ by computing $det(B)det(A) = det (BA)$, where $det B$ was particularly easy.
Picking
$$
B = pmatrixcos phi & sin phi & 0 \
-sin phi & cos phi, & 0 \
0 & 0 & 1
$$
generates a matrix $BA$ whose form is rather simpler than that of $A$ (there's no $phi$, for instance!), while $det B$ is evidently $1$.
But I thing the question-asker's intent here is that you're just supposed to do the algebra and practice trig simplification.
$endgroup$
If you were really clever (e.g., if you already knew the answer, or thought hard about what a Jacobian in a different coordinate system represents), you could compute $det(A)$ by computing $det(B)det(A) = det (BA)$, where $det B$ was particularly easy.
Picking
$$
B = pmatrixcos phi & sin phi & 0 \
-sin phi & cos phi, & 0 \
0 & 0 & 1
$$
generates a matrix $BA$ whose form is rather simpler than that of $A$ (there's no $phi$, for instance!), while $det B$ is evidently $1$.
But I thing the question-asker's intent here is that you're just supposed to do the algebra and practice trig simplification.
answered Apr 8 at 11:45
John HughesJohn Hughes
65.5k24293
65.5k24293
$begingroup$
Yeah... I just only thought about the calculation method from a determinant prospect, just want to somehow simplify it. But I ignored A is also a matrix... Thank you for your answer too! (But I think maybe I cannot think up this B immediately =-O , I will fight in the future study)
$endgroup$
– Peter Nova
Apr 8 at 12:08
add a comment |
$begingroup$
Yeah... I just only thought about the calculation method from a determinant prospect, just want to somehow simplify it. But I ignored A is also a matrix... Thank you for your answer too! (But I think maybe I cannot think up this B immediately =-O , I will fight in the future study)
$endgroup$
– Peter Nova
Apr 8 at 12:08
$begingroup$
Yeah... I just only thought about the calculation method from a determinant prospect, just want to somehow simplify it. But I ignored A is also a matrix... Thank you for your answer too! (But I think maybe I cannot think up this B immediately =-O , I will fight in the future study)
$endgroup$
– Peter Nova
Apr 8 at 12:08
$begingroup$
Yeah... I just only thought about the calculation method from a determinant prospect, just want to somehow simplify it. But I ignored A is also a matrix... Thank you for your answer too! (But I think maybe I cannot think up this B immediately =-O , I will fight in the future study)
$endgroup$
– Peter Nova
Apr 8 at 12:08
add a comment |
Peter Nova is a new contributor. Be nice, and check out our Code of Conduct.
Peter Nova is a new contributor. Be nice, and check out our Code of Conduct.
Peter Nova is a new contributor. Be nice, and check out our Code of Conduct.
Peter Nova is a new contributor. Be nice, and check out our Code of Conduct.
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3179472%2fhow-to-find-the-determinant-of-this-matrix-a-spherical-cartesian-transformatio%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
Why can't you "solve" (=calculate?) $det A$? It's bare for calculation.
$endgroup$
– Saucy O'Path
Apr 8 at 11:03
$begingroup$
Thank you @Saucy O'Path, it is true that we just need to calculate, then we could get det(A)=r^2sinθ. I initially thought that maybe we could simplify A by add/sub the row/cow of the matrix to make things easier......
$endgroup$
– Peter Nova
Apr 8 at 11:26
$begingroup$
Nah, it's largely a matter of grouping all the $sin^2+cos^2$ that appear when you make the products.
$endgroup$
– Saucy O'Path
Apr 8 at 11:34
$begingroup$
Of course you can calculate the determinant by reducing it using properties of determinant (like this for example). This is a standard result.
$endgroup$
– StubbornAtom
Apr 8 at 12:20