Homework question about an engine pulling a train Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 23, 2019 at 23:30 UTC (7:30pm US/Eastern) 2019 Moderator Election Q&A - Question CollectionMechanics Question: Work and PowerMechanics Question: Energy, Work and PowerCan we define tension in a string as the reactive force produced in a string being pulled at both ends?What objects' masses do we need to take into account when calculating force?Does the frame of reference change the behavior of a particleA train is moving up an incline of inclination $pi/6$ with constant velocity. A bob is hung on the ceiling. The angle made by the bob with normal?Homework - Calculating normal force with additional accelerations (besides gravity)What does the Force in the equation P=FV represent?Infinite loop of forces?Mechanics Question - Thrust in a Rod between train and carriage

Caught masturbating at work

Resize vertical bars (absolute-value symbols)

Why is it faster to reheat something than it is to cook it?

What does Turing mean by this statement?

Can an iPhone 7 be made to function as a NFC Tag?

What would you call this weird metallic apparatus that allows you to lift people?

What is the role of と after a noun when it doesn't appear to count or list anything?

Can two people see the same photon?

Putting class ranking in CV, but against dept guidelines

How can I prevent/balance waiting and turtling as a response to cooldown mechanics

malloc in main() or malloc in another function: allocating memory for a struct and its members

If Windows 7 doesn't support WSL, then what is "Subsystem for UNIX-based Applications"?

Was Kant an Intuitionist about mathematical objects?

Why complex landing gears are used instead of simple,reliability and light weight muscle wire or shape memory alloys?

A proverb that is used to imply that you have unexpectedly faced a big problem

The Nth Gryphon Number

What does it mean that physics no longer uses mechanical models to describe phenomena?

What order were files/directories output in dir?

Google .dev domain strangely redirects to https

Delete free apps from Play Store library

Why not use the yoke to control yaw, as well as pitch and roll?

What are the main differences between the original Stargate SG-1 and the Final Cut edition?

What does the writing on Poe's helmet say?

Why BitLocker does not use RSA



Homework question about an engine pulling a train



Announcing the arrival of Valued Associate #679: Cesar Manara
Planned maintenance scheduled April 23, 2019 at 23:30 UTC (7:30pm US/Eastern)
2019 Moderator Election Q&A - Question CollectionMechanics Question: Work and PowerMechanics Question: Energy, Work and PowerCan we define tension in a string as the reactive force produced in a string being pulled at both ends?What objects' masses do we need to take into account when calculating force?Does the frame of reference change the behavior of a particleA train is moving up an incline of inclination $pi/6$ with constant velocity. A bob is hung on the ceiling. The angle made by the bob with normal?Homework - Calculating normal force with additional accelerations (besides gravity)What does the Force in the equation P=FV represent?Infinite loop of forces?Mechanics Question - Thrust in a Rod between train and carriage










7












$begingroup$



An 8000 kg engine pulls a train of 5 wagons, each of 2000 kg, along a
horizontal track. If the engine exerts a force of 40000N , calculate the acceleration of the train.




To find the acceleration of the train , I divided 40000N by mass of 5 wagons.
But in the book the mass of the engine was also included for finding the acceleration.



I cannot understand how is the force of 40000 N acting on (engine + wagons). According to me this should only act on the wagons as the engine is applying this force.










share|cite|improve this question











$endgroup$







  • 7




    $begingroup$
    This is a poorly worded question. I read (like you) that the engine exerts 40000 N on the train of wagons. What they should have said is that the net force on the engine and train is 40000 N, if the mass of the engine was involved. The only correct answer is to give both situations. The book is wrong.
    $endgroup$
    – Bill N
    Apr 12 at 11:43






  • 6




    $begingroup$
    It's tricky but it says "the engine exerts a force" it does not say " the engine exerts a force on the cars". And that's the reason you include the engine!
    $endgroup$
    – PhysicsDave
    Apr 12 at 12:40






  • 3




    $begingroup$
    The problem is ambiguously worded, but I'm shocked that you have all forgotten to include the vertical force exerted by the weight of the engine on the ground! Surely, we're meant to subtract that out from the 40kN total force. Since the question does not specify what the local gravity is on the train's planet, we clearly cannot solve it.
    $endgroup$
    – Xerxes
    Apr 12 at 13:26






  • 5




    $begingroup$
    @Xerxes This is completely wrong. The vertical forces cancel each other and have nothing to do with the horizontal force pulling the train. You forget the normal force exerted by the ground on the train.
    $endgroup$
    – nasu
    Apr 12 at 15:16






  • 4




    $begingroup$
    @nasu The cancelling normal force is exerted on, not by, the engine.
    $endgroup$
    – Xerxes
    Apr 12 at 15:47















7












$begingroup$



An 8000 kg engine pulls a train of 5 wagons, each of 2000 kg, along a
horizontal track. If the engine exerts a force of 40000N , calculate the acceleration of the train.




To find the acceleration of the train , I divided 40000N by mass of 5 wagons.
But in the book the mass of the engine was also included for finding the acceleration.



I cannot understand how is the force of 40000 N acting on (engine + wagons). According to me this should only act on the wagons as the engine is applying this force.










share|cite|improve this question











$endgroup$







  • 7




    $begingroup$
    This is a poorly worded question. I read (like you) that the engine exerts 40000 N on the train of wagons. What they should have said is that the net force on the engine and train is 40000 N, if the mass of the engine was involved. The only correct answer is to give both situations. The book is wrong.
    $endgroup$
    – Bill N
    Apr 12 at 11:43






  • 6




    $begingroup$
    It's tricky but it says "the engine exerts a force" it does not say " the engine exerts a force on the cars". And that's the reason you include the engine!
    $endgroup$
    – PhysicsDave
    Apr 12 at 12:40






  • 3




    $begingroup$
    The problem is ambiguously worded, but I'm shocked that you have all forgotten to include the vertical force exerted by the weight of the engine on the ground! Surely, we're meant to subtract that out from the 40kN total force. Since the question does not specify what the local gravity is on the train's planet, we clearly cannot solve it.
    $endgroup$
    – Xerxes
    Apr 12 at 13:26






  • 5




    $begingroup$
    @Xerxes This is completely wrong. The vertical forces cancel each other and have nothing to do with the horizontal force pulling the train. You forget the normal force exerted by the ground on the train.
    $endgroup$
    – nasu
    Apr 12 at 15:16






  • 4




    $begingroup$
    @nasu The cancelling normal force is exerted on, not by, the engine.
    $endgroup$
    – Xerxes
    Apr 12 at 15:47













7












7








7


2



$begingroup$



An 8000 kg engine pulls a train of 5 wagons, each of 2000 kg, along a
horizontal track. If the engine exerts a force of 40000N , calculate the acceleration of the train.




To find the acceleration of the train , I divided 40000N by mass of 5 wagons.
But in the book the mass of the engine was also included for finding the acceleration.



I cannot understand how is the force of 40000 N acting on (engine + wagons). According to me this should only act on the wagons as the engine is applying this force.










share|cite|improve this question











$endgroup$





An 8000 kg engine pulls a train of 5 wagons, each of 2000 kg, along a
horizontal track. If the engine exerts a force of 40000N , calculate the acceleration of the train.




To find the acceleration of the train , I divided 40000N by mass of 5 wagons.
But in the book the mass of the engine was also included for finding the acceleration.



I cannot understand how is the force of 40000 N acting on (engine + wagons). According to me this should only act on the wagons as the engine is applying this force.







homework-and-exercises newtonian-mechanics forces






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Apr 12 at 17:14









knzhou

47.2k11128227




47.2k11128227










asked Apr 12 at 10:03









Ashok SharmaAshok Sharma

818




818







  • 7




    $begingroup$
    This is a poorly worded question. I read (like you) that the engine exerts 40000 N on the train of wagons. What they should have said is that the net force on the engine and train is 40000 N, if the mass of the engine was involved. The only correct answer is to give both situations. The book is wrong.
    $endgroup$
    – Bill N
    Apr 12 at 11:43






  • 6




    $begingroup$
    It's tricky but it says "the engine exerts a force" it does not say " the engine exerts a force on the cars". And that's the reason you include the engine!
    $endgroup$
    – PhysicsDave
    Apr 12 at 12:40






  • 3




    $begingroup$
    The problem is ambiguously worded, but I'm shocked that you have all forgotten to include the vertical force exerted by the weight of the engine on the ground! Surely, we're meant to subtract that out from the 40kN total force. Since the question does not specify what the local gravity is on the train's planet, we clearly cannot solve it.
    $endgroup$
    – Xerxes
    Apr 12 at 13:26






  • 5




    $begingroup$
    @Xerxes This is completely wrong. The vertical forces cancel each other and have nothing to do with the horizontal force pulling the train. You forget the normal force exerted by the ground on the train.
    $endgroup$
    – nasu
    Apr 12 at 15:16






  • 4




    $begingroup$
    @nasu The cancelling normal force is exerted on, not by, the engine.
    $endgroup$
    – Xerxes
    Apr 12 at 15:47












  • 7




    $begingroup$
    This is a poorly worded question. I read (like you) that the engine exerts 40000 N on the train of wagons. What they should have said is that the net force on the engine and train is 40000 N, if the mass of the engine was involved. The only correct answer is to give both situations. The book is wrong.
    $endgroup$
    – Bill N
    Apr 12 at 11:43






  • 6




    $begingroup$
    It's tricky but it says "the engine exerts a force" it does not say " the engine exerts a force on the cars". And that's the reason you include the engine!
    $endgroup$
    – PhysicsDave
    Apr 12 at 12:40






  • 3




    $begingroup$
    The problem is ambiguously worded, but I'm shocked that you have all forgotten to include the vertical force exerted by the weight of the engine on the ground! Surely, we're meant to subtract that out from the 40kN total force. Since the question does not specify what the local gravity is on the train's planet, we clearly cannot solve it.
    $endgroup$
    – Xerxes
    Apr 12 at 13:26






  • 5




    $begingroup$
    @Xerxes This is completely wrong. The vertical forces cancel each other and have nothing to do with the horizontal force pulling the train. You forget the normal force exerted by the ground on the train.
    $endgroup$
    – nasu
    Apr 12 at 15:16






  • 4




    $begingroup$
    @nasu The cancelling normal force is exerted on, not by, the engine.
    $endgroup$
    – Xerxes
    Apr 12 at 15:47







7




7




$begingroup$
This is a poorly worded question. I read (like you) that the engine exerts 40000 N on the train of wagons. What they should have said is that the net force on the engine and train is 40000 N, if the mass of the engine was involved. The only correct answer is to give both situations. The book is wrong.
$endgroup$
– Bill N
Apr 12 at 11:43




$begingroup$
This is a poorly worded question. I read (like you) that the engine exerts 40000 N on the train of wagons. What they should have said is that the net force on the engine and train is 40000 N, if the mass of the engine was involved. The only correct answer is to give both situations. The book is wrong.
$endgroup$
– Bill N
Apr 12 at 11:43




6




6




$begingroup$
It's tricky but it says "the engine exerts a force" it does not say " the engine exerts a force on the cars". And that's the reason you include the engine!
$endgroup$
– PhysicsDave
Apr 12 at 12:40




$begingroup$
It's tricky but it says "the engine exerts a force" it does not say " the engine exerts a force on the cars". And that's the reason you include the engine!
$endgroup$
– PhysicsDave
Apr 12 at 12:40




3




3




$begingroup$
The problem is ambiguously worded, but I'm shocked that you have all forgotten to include the vertical force exerted by the weight of the engine on the ground! Surely, we're meant to subtract that out from the 40kN total force. Since the question does not specify what the local gravity is on the train's planet, we clearly cannot solve it.
$endgroup$
– Xerxes
Apr 12 at 13:26




$begingroup$
The problem is ambiguously worded, but I'm shocked that you have all forgotten to include the vertical force exerted by the weight of the engine on the ground! Surely, we're meant to subtract that out from the 40kN total force. Since the question does not specify what the local gravity is on the train's planet, we clearly cannot solve it.
$endgroup$
– Xerxes
Apr 12 at 13:26




5




5




$begingroup$
@Xerxes This is completely wrong. The vertical forces cancel each other and have nothing to do with the horizontal force pulling the train. You forget the normal force exerted by the ground on the train.
$endgroup$
– nasu
Apr 12 at 15:16




$begingroup$
@Xerxes This is completely wrong. The vertical forces cancel each other and have nothing to do with the horizontal force pulling the train. You forget the normal force exerted by the ground on the train.
$endgroup$
– nasu
Apr 12 at 15:16




4




4




$begingroup$
@nasu The cancelling normal force is exerted on, not by, the engine.
$endgroup$
– Xerxes
Apr 12 at 15:47




$begingroup$
@nasu The cancelling normal force is exerted on, not by, the engine.
$endgroup$
– Xerxes
Apr 12 at 15:47










6 Answers
6






active

oldest

votes


















11












$begingroup$

The question is ambiguous, but I think we are meant to assume that the engine exerts a force of $40000$ N on the track. From the reaction force of $40000$ N on the engine some part, say $F_1$, is acting to accelerate the engine itself and some other part, say $F_2$, is exerted on the wagons. The acceleration of the engine and of the wagons is the same, so if this acceleration is $a$ then



$F_1 = 8000a \ F_2 = 10000a \ 40000 = F_1 + F_2 = 18000a \ Rightarrow a = frac4000018000$






share|cite|improve this answer











$endgroup$








  • 2




    $begingroup$
    I agree, the wording includes the engine.
    $endgroup$
    – PhysicsDave
    Apr 12 at 12:44










  • $begingroup$
    I would argue that the engine exerts the force on the track, and the reaction force is what accelerates the (whole) train (engine+wagons). Otherwise the problem would have specified the force acting at the first coupling, or used some indication like "net".
    $endgroup$
    – CCTO
    Apr 12 at 15:43










  • $begingroup$
    @CCTO Agreed - I will add this to my answer.
    $endgroup$
    – gandalf61
    Apr 12 at 15:48










  • $begingroup$
    The OP's question is a good one, but I don't think that the test question is ambiguous in the slightest. It seems to me that the OP's misunderstanding of it is exactly the sort of misunderstanding that this question is designed to test.
    $endgroup$
    – bornfromanegg
    Apr 12 at 16:09







  • 1




    $begingroup$
    @bornfromanegg I think the ambiguity comes from the word "engine". if we assume that the engine is a moving engine i.e. a locomotive then the $40000$ N is accelerating both the engine and the wagons. But "engine" could possibly mean stationary engine, in which case the $40000$ N is accelerating only the wagons and the mass of the engine is irrelevant.
    $endgroup$
    – gandalf61
    Apr 12 at 16:17


















7












$begingroup$

IMO you're right: the problem's wording is bad. It's meaningless to say "the engine exerts a force of 40000 N". The engine interacts both with the first wagon and with the rail, exerting forces on both and these forces are different. How can we know what the book's author had in mind? If the former, your answer is right, if the latter, the book's one is right. Of course in the latter case (force exerted on rail) it's not that force which accelerates the train, but the rail's reaction.



As a general rule we shouldn't say "A exerts a force" - much better "A exerts a force on B". Better yet "A exerts a force on point P of B". The point where a force acts can make a great difference.



Edit



Many things have been said but IMO it's useful to be still clearer. After further reflections I think it's not wording that's bad, but the thinking behind.



As already stated e.g. by @Farcher in mechanics problems the first thing to be done is to make clear which the (mechanical) system is. In our case, it's wagons or wagons + engine? Note that it wouldn't make
difference as to acceleration, which is the same for all parts of the train, but isn't by no means the same if forces are concerned. Consider the two choices:



a) The system consists of wagons alone. Then it makes sense to say that engine (which doesn't belong to the system) applies a given force $F$ to the system and compute acceleration as $a=F/m$, where
$m=10000,rm kg$. Given the book's answer, this isn't the author's choice.



b) The system consists of the whole train, engine included. Then there are two alternatives as to the given force $F$ (here I'm reiterating)



b1) $F$ is a force engine applies to wagons. Then it's an internal force and as such it cannot accelerate the system. Its acceleration is only due to the net external force (in computing the resultant internal forces cancel thanks to third Newton's law). Then the
solution is nonsense.



b2) $F$ is a force engine applies to external world. In that case it will never accelerate the system or a part of it. It could accelerate the rail, were it not firmly fixed to ground. Not to mention that a force engine applies to rail exists, but is in the wrong direction.



So not even choice b) is acceptable. Neither as it's used in gandalf61's answer.



I'd like to add another comment. Unfortunately "engine" in English may mean two different things: either the motor proper (electric, diesel,
or else) which ultimately is the cause of motion - or the car carrying it. Of course the datum of mass suggests the latter interpretation. But my suspicion is that the author - maybe without realizing - thought
of the former.



I'm led to say so because it's a very common way of thinking about cars and other motorized vehicles. If you ask someone "which force causes a car move?" I bet you'll get as an answer "the motor's force". Nobody thinks that in strict mechanical meaning the motor can only produce internal forces and as such will never move a car by a cm. That the only external force which can put a car in motion is the road's friction on the wheels.






share|cite|improve this answer











$endgroup$












  • $begingroup$
    Choice b is, acceptable. You just have to go one more step and apply the law of action and reaction. The force exerted on the rails accelerates the Earth, but the reaction accelerates the train.
    $endgroup$
    – Jan Hudec
    Apr 13 at 12:18


















4












$begingroup$

You have to add mass of engine also.The force is applied on whole system.What will be the acceleration of only engine if you remove wagons?You will consider it's mass also.






share|cite|improve this answer









$endgroup$








  • 7




    $begingroup$
    "The force is applied on whole system." That's NOT what the words of the problem say. The engine exerts a force---that must be on something else. In this type of analysis, things don't have self-forces. It's a terrible question.
    $endgroup$
    – Bill N
    Apr 12 at 11:49






  • 1




    $begingroup$
    @Bill N: The engine exerts a force on the TRACK, which causes it to accelerate. Since the engine is connected to the cars, it must accelerate them as well, so the mass being accelerated is engine + cars.
    $endgroup$
    – jamesqf
    Apr 12 at 15:45










  • $begingroup$
    @jamesqf The engine also exerts a force on the tracks due to gravity. Since we were just given total force exerted by the engine on the tracks, don't forget to subtract the gravity portion when calculating the force accelerating the train.
    $endgroup$
    – Matt
    Apr 12 at 16:20










  • $begingroup$
    @Matt As long as we're being pedantic, they don't say which planet this train is on, or if it's outer space, so the gravitational force is undefined and the question is unsolvable.
    $endgroup$
    – Nuclear Wang
    Apr 12 at 18:26






  • 1




    $begingroup$
    @NuclearWang Good point! But I disagree that accounting for gravity is pedantic. (Anyway, assuming earth is a pretty standard assumption for entry level physics) The question doesnt specify what the 40kN is exerted on. It could reasonably be on the first wagon in the line, or it could be the tracks. But in fact neither of these are what the "correct" answer assumes. I dont think its fair to expect arbitrary assumptions while also expecting the OP to ignore a very real, very important, force. Especially since the engine apparently exerts a net 40 kN on presisely zero objects.
    $endgroup$
    – Matt
    Apr 12 at 18:32


















3












$begingroup$

Imagine if you only had the engine by itself exerting the same 40,000N of thrust, to find the acceleration of the engine you would not do 40000/0kg would you? The 40,000N the engine exert is also used to thrust itself forward.



But let’s say it didn’t, and that only the wagons were pulled. Well now you have a stationary engine, pulling 5 wagons, each with an acceleration of 4m/s^2. These wagons will catch up to the engine in no time and obliterate the engine from behind. we can at least agree this is not how train works






share|cite|improve this answer









$endgroup$








  • 1




    $begingroup$
    If the engine is by itself,, what is exerting thrust on? It can't exert thrust on itself. There must be something else exerting thrust on the engine. Regarding your second paragraph, there is obviously some force acting on the engine, but we aren't told what it is. All we know is that the engine exerts a force of 40000 N, presumably on the train of wagons.
    $endgroup$
    – Bill N
    Apr 12 at 11:51






  • 1




    $begingroup$
    It's tricky but it says "the engine exerts a force" it does not say " the engine exerts a force on the cars". And that's the reason you include the engine! The problem is solvable for either situation.
    $endgroup$
    – PhysicsDave
    Apr 12 at 12:43










  • $begingroup$
    I do agree with Physics Dave. Though the very existence of this Q and some comments tell that the exercise could have been written more clearly.
    $endgroup$
    – Alchimista
    Apr 12 at 14:47










  • $begingroup$
    @BillN on the rails, naturally.
    $endgroup$
    – hobbs
    Apr 12 at 15:46



















2












$begingroup$

The question is flawed in that can be deemed to be ambiguous and therefore requires interpretation.



Using Newton’s second law requires the system under consideration to be defined and that has not been done in this question.



Without the system being defined the statement




the engine exerts a force of 40000N




is the cause of the ambiguity.



So which is it?



1 The engine is exerting an external force of 40000N on the system of five wagons.



2 The engine exerts an internal force of 40000N on the system of five wagons and the engine.



3 There is an external force of 40000N on the engine and five wagons.



The author of the book really meant option 3 but given the way the question was written I have to agree with the OP that an external force of 40000N is acting on the five wagons whcich is option 1.






share|cite|improve this answer











$endgroup$




















    2












    $begingroup$

    The force of 40 kN is exerted on the rails, not the wagons



    We have to assume that the engine and wagons are all coupled together, and therefore that they move together. If the engine exerted a force on the wagons but did not move with them, the wagons would provide a different force in reaction. If the train was off the track, it would not be exerting that force on the wagons.



    The engine turns the wheels which exert a force backwards on the rails, which also imparts the reaction forwards on the train.



    That force is transmitted from the rails through the engine and the coupling to the wagons.



    To take a different circumstance, suppose the train was going uphill? The engine will still exert a force of the same magnitude, but this time the balance of forces and angles are different, so the acceleration is different too.



    Thus that force must accelerate the total mass of the engine and the wagons together.






    share|cite|improve this answer









    $endgroup$








    • 1




      $begingroup$
      No, the question is flawed/ambiguous. When you specify "A exerts a force ...." you must say what that force is exerted on.
      $endgroup$
      – Bill N
      Apr 14 at 3:25











    Your Answer








    StackExchange.ready(function()
    var channelOptions =
    tags: "".split(" "),
    id: "151"
    ;
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function()
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled)
    StackExchange.using("snippets", function()
    createEditor();
    );

    else
    createEditor();

    );

    function createEditor()
    StackExchange.prepareEditor(
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: false,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: null,
    bindNavPrevention: true,
    postfix: "",
    imageUploader:
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    ,
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    );



    );













    draft saved

    draft discarded


















    StackExchange.ready(
    function ()
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fphysics.stackexchange.com%2fquestions%2f472237%2fhomework-question-about-an-engine-pulling-a-train%23new-answer', 'question_page');

    );

    Post as a guest















    Required, but never shown

























    6 Answers
    6






    active

    oldest

    votes








    6 Answers
    6






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    11












    $begingroup$

    The question is ambiguous, but I think we are meant to assume that the engine exerts a force of $40000$ N on the track. From the reaction force of $40000$ N on the engine some part, say $F_1$, is acting to accelerate the engine itself and some other part, say $F_2$, is exerted on the wagons. The acceleration of the engine and of the wagons is the same, so if this acceleration is $a$ then



    $F_1 = 8000a \ F_2 = 10000a \ 40000 = F_1 + F_2 = 18000a \ Rightarrow a = frac4000018000$






    share|cite|improve this answer











    $endgroup$








    • 2




      $begingroup$
      I agree, the wording includes the engine.
      $endgroup$
      – PhysicsDave
      Apr 12 at 12:44










    • $begingroup$
      I would argue that the engine exerts the force on the track, and the reaction force is what accelerates the (whole) train (engine+wagons). Otherwise the problem would have specified the force acting at the first coupling, or used some indication like "net".
      $endgroup$
      – CCTO
      Apr 12 at 15:43










    • $begingroup$
      @CCTO Agreed - I will add this to my answer.
      $endgroup$
      – gandalf61
      Apr 12 at 15:48










    • $begingroup$
      The OP's question is a good one, but I don't think that the test question is ambiguous in the slightest. It seems to me that the OP's misunderstanding of it is exactly the sort of misunderstanding that this question is designed to test.
      $endgroup$
      – bornfromanegg
      Apr 12 at 16:09







    • 1




      $begingroup$
      @bornfromanegg I think the ambiguity comes from the word "engine". if we assume that the engine is a moving engine i.e. a locomotive then the $40000$ N is accelerating both the engine and the wagons. But "engine" could possibly mean stationary engine, in which case the $40000$ N is accelerating only the wagons and the mass of the engine is irrelevant.
      $endgroup$
      – gandalf61
      Apr 12 at 16:17















    11












    $begingroup$

    The question is ambiguous, but I think we are meant to assume that the engine exerts a force of $40000$ N on the track. From the reaction force of $40000$ N on the engine some part, say $F_1$, is acting to accelerate the engine itself and some other part, say $F_2$, is exerted on the wagons. The acceleration of the engine and of the wagons is the same, so if this acceleration is $a$ then



    $F_1 = 8000a \ F_2 = 10000a \ 40000 = F_1 + F_2 = 18000a \ Rightarrow a = frac4000018000$






    share|cite|improve this answer











    $endgroup$








    • 2




      $begingroup$
      I agree, the wording includes the engine.
      $endgroup$
      – PhysicsDave
      Apr 12 at 12:44










    • $begingroup$
      I would argue that the engine exerts the force on the track, and the reaction force is what accelerates the (whole) train (engine+wagons). Otherwise the problem would have specified the force acting at the first coupling, or used some indication like "net".
      $endgroup$
      – CCTO
      Apr 12 at 15:43










    • $begingroup$
      @CCTO Agreed - I will add this to my answer.
      $endgroup$
      – gandalf61
      Apr 12 at 15:48










    • $begingroup$
      The OP's question is a good one, but I don't think that the test question is ambiguous in the slightest. It seems to me that the OP's misunderstanding of it is exactly the sort of misunderstanding that this question is designed to test.
      $endgroup$
      – bornfromanegg
      Apr 12 at 16:09







    • 1




      $begingroup$
      @bornfromanegg I think the ambiguity comes from the word "engine". if we assume that the engine is a moving engine i.e. a locomotive then the $40000$ N is accelerating both the engine and the wagons. But "engine" could possibly mean stationary engine, in which case the $40000$ N is accelerating only the wagons and the mass of the engine is irrelevant.
      $endgroup$
      – gandalf61
      Apr 12 at 16:17













    11












    11








    11





    $begingroup$

    The question is ambiguous, but I think we are meant to assume that the engine exerts a force of $40000$ N on the track. From the reaction force of $40000$ N on the engine some part, say $F_1$, is acting to accelerate the engine itself and some other part, say $F_2$, is exerted on the wagons. The acceleration of the engine and of the wagons is the same, so if this acceleration is $a$ then



    $F_1 = 8000a \ F_2 = 10000a \ 40000 = F_1 + F_2 = 18000a \ Rightarrow a = frac4000018000$






    share|cite|improve this answer











    $endgroup$



    The question is ambiguous, but I think we are meant to assume that the engine exerts a force of $40000$ N on the track. From the reaction force of $40000$ N on the engine some part, say $F_1$, is acting to accelerate the engine itself and some other part, say $F_2$, is exerted on the wagons. The acceleration of the engine and of the wagons is the same, so if this acceleration is $a$ then



    $F_1 = 8000a \ F_2 = 10000a \ 40000 = F_1 + F_2 = 18000a \ Rightarrow a = frac4000018000$







    share|cite|improve this answer














    share|cite|improve this answer



    share|cite|improve this answer








    edited Apr 12 at 15:57

























    answered Apr 12 at 11:14









    gandalf61gandalf61

    802210




    802210







    • 2




      $begingroup$
      I agree, the wording includes the engine.
      $endgroup$
      – PhysicsDave
      Apr 12 at 12:44










    • $begingroup$
      I would argue that the engine exerts the force on the track, and the reaction force is what accelerates the (whole) train (engine+wagons). Otherwise the problem would have specified the force acting at the first coupling, or used some indication like "net".
      $endgroup$
      – CCTO
      Apr 12 at 15:43










    • $begingroup$
      @CCTO Agreed - I will add this to my answer.
      $endgroup$
      – gandalf61
      Apr 12 at 15:48










    • $begingroup$
      The OP's question is a good one, but I don't think that the test question is ambiguous in the slightest. It seems to me that the OP's misunderstanding of it is exactly the sort of misunderstanding that this question is designed to test.
      $endgroup$
      – bornfromanegg
      Apr 12 at 16:09







    • 1




      $begingroup$
      @bornfromanegg I think the ambiguity comes from the word "engine". if we assume that the engine is a moving engine i.e. a locomotive then the $40000$ N is accelerating both the engine and the wagons. But "engine" could possibly mean stationary engine, in which case the $40000$ N is accelerating only the wagons and the mass of the engine is irrelevant.
      $endgroup$
      – gandalf61
      Apr 12 at 16:17












    • 2




      $begingroup$
      I agree, the wording includes the engine.
      $endgroup$
      – PhysicsDave
      Apr 12 at 12:44










    • $begingroup$
      I would argue that the engine exerts the force on the track, and the reaction force is what accelerates the (whole) train (engine+wagons). Otherwise the problem would have specified the force acting at the first coupling, or used some indication like "net".
      $endgroup$
      – CCTO
      Apr 12 at 15:43










    • $begingroup$
      @CCTO Agreed - I will add this to my answer.
      $endgroup$
      – gandalf61
      Apr 12 at 15:48










    • $begingroup$
      The OP's question is a good one, but I don't think that the test question is ambiguous in the slightest. It seems to me that the OP's misunderstanding of it is exactly the sort of misunderstanding that this question is designed to test.
      $endgroup$
      – bornfromanegg
      Apr 12 at 16:09







    • 1




      $begingroup$
      @bornfromanegg I think the ambiguity comes from the word "engine". if we assume that the engine is a moving engine i.e. a locomotive then the $40000$ N is accelerating both the engine and the wagons. But "engine" could possibly mean stationary engine, in which case the $40000$ N is accelerating only the wagons and the mass of the engine is irrelevant.
      $endgroup$
      – gandalf61
      Apr 12 at 16:17







    2




    2




    $begingroup$
    I agree, the wording includes the engine.
    $endgroup$
    – PhysicsDave
    Apr 12 at 12:44




    $begingroup$
    I agree, the wording includes the engine.
    $endgroup$
    – PhysicsDave
    Apr 12 at 12:44












    $begingroup$
    I would argue that the engine exerts the force on the track, and the reaction force is what accelerates the (whole) train (engine+wagons). Otherwise the problem would have specified the force acting at the first coupling, or used some indication like "net".
    $endgroup$
    – CCTO
    Apr 12 at 15:43




    $begingroup$
    I would argue that the engine exerts the force on the track, and the reaction force is what accelerates the (whole) train (engine+wagons). Otherwise the problem would have specified the force acting at the first coupling, or used some indication like "net".
    $endgroup$
    – CCTO
    Apr 12 at 15:43












    $begingroup$
    @CCTO Agreed - I will add this to my answer.
    $endgroup$
    – gandalf61
    Apr 12 at 15:48




    $begingroup$
    @CCTO Agreed - I will add this to my answer.
    $endgroup$
    – gandalf61
    Apr 12 at 15:48












    $begingroup$
    The OP's question is a good one, but I don't think that the test question is ambiguous in the slightest. It seems to me that the OP's misunderstanding of it is exactly the sort of misunderstanding that this question is designed to test.
    $endgroup$
    – bornfromanegg
    Apr 12 at 16:09





    $begingroup$
    The OP's question is a good one, but I don't think that the test question is ambiguous in the slightest. It seems to me that the OP's misunderstanding of it is exactly the sort of misunderstanding that this question is designed to test.
    $endgroup$
    – bornfromanegg
    Apr 12 at 16:09





    1




    1




    $begingroup$
    @bornfromanegg I think the ambiguity comes from the word "engine". if we assume that the engine is a moving engine i.e. a locomotive then the $40000$ N is accelerating both the engine and the wagons. But "engine" could possibly mean stationary engine, in which case the $40000$ N is accelerating only the wagons and the mass of the engine is irrelevant.
    $endgroup$
    – gandalf61
    Apr 12 at 16:17




    $begingroup$
    @bornfromanegg I think the ambiguity comes from the word "engine". if we assume that the engine is a moving engine i.e. a locomotive then the $40000$ N is accelerating both the engine and the wagons. But "engine" could possibly mean stationary engine, in which case the $40000$ N is accelerating only the wagons and the mass of the engine is irrelevant.
    $endgroup$
    – gandalf61
    Apr 12 at 16:17











    7












    $begingroup$

    IMO you're right: the problem's wording is bad. It's meaningless to say "the engine exerts a force of 40000 N". The engine interacts both with the first wagon and with the rail, exerting forces on both and these forces are different. How can we know what the book's author had in mind? If the former, your answer is right, if the latter, the book's one is right. Of course in the latter case (force exerted on rail) it's not that force which accelerates the train, but the rail's reaction.



    As a general rule we shouldn't say "A exerts a force" - much better "A exerts a force on B". Better yet "A exerts a force on point P of B". The point where a force acts can make a great difference.



    Edit



    Many things have been said but IMO it's useful to be still clearer. After further reflections I think it's not wording that's bad, but the thinking behind.



    As already stated e.g. by @Farcher in mechanics problems the first thing to be done is to make clear which the (mechanical) system is. In our case, it's wagons or wagons + engine? Note that it wouldn't make
    difference as to acceleration, which is the same for all parts of the train, but isn't by no means the same if forces are concerned. Consider the two choices:



    a) The system consists of wagons alone. Then it makes sense to say that engine (which doesn't belong to the system) applies a given force $F$ to the system and compute acceleration as $a=F/m$, where
    $m=10000,rm kg$. Given the book's answer, this isn't the author's choice.



    b) The system consists of the whole train, engine included. Then there are two alternatives as to the given force $F$ (here I'm reiterating)



    b1) $F$ is a force engine applies to wagons. Then it's an internal force and as such it cannot accelerate the system. Its acceleration is only due to the net external force (in computing the resultant internal forces cancel thanks to third Newton's law). Then the
    solution is nonsense.



    b2) $F$ is a force engine applies to external world. In that case it will never accelerate the system or a part of it. It could accelerate the rail, were it not firmly fixed to ground. Not to mention that a force engine applies to rail exists, but is in the wrong direction.



    So not even choice b) is acceptable. Neither as it's used in gandalf61's answer.



    I'd like to add another comment. Unfortunately "engine" in English may mean two different things: either the motor proper (electric, diesel,
    or else) which ultimately is the cause of motion - or the car carrying it. Of course the datum of mass suggests the latter interpretation. But my suspicion is that the author - maybe without realizing - thought
    of the former.



    I'm led to say so because it's a very common way of thinking about cars and other motorized vehicles. If you ask someone "which force causes a car move?" I bet you'll get as an answer "the motor's force". Nobody thinks that in strict mechanical meaning the motor can only produce internal forces and as such will never move a car by a cm. That the only external force which can put a car in motion is the road's friction on the wheels.






    share|cite|improve this answer











    $endgroup$












    • $begingroup$
      Choice b is, acceptable. You just have to go one more step and apply the law of action and reaction. The force exerted on the rails accelerates the Earth, but the reaction accelerates the train.
      $endgroup$
      – Jan Hudec
      Apr 13 at 12:18















    7












    $begingroup$

    IMO you're right: the problem's wording is bad. It's meaningless to say "the engine exerts a force of 40000 N". The engine interacts both with the first wagon and with the rail, exerting forces on both and these forces are different. How can we know what the book's author had in mind? If the former, your answer is right, if the latter, the book's one is right. Of course in the latter case (force exerted on rail) it's not that force which accelerates the train, but the rail's reaction.



    As a general rule we shouldn't say "A exerts a force" - much better "A exerts a force on B". Better yet "A exerts a force on point P of B". The point where a force acts can make a great difference.



    Edit



    Many things have been said but IMO it's useful to be still clearer. After further reflections I think it's not wording that's bad, but the thinking behind.



    As already stated e.g. by @Farcher in mechanics problems the first thing to be done is to make clear which the (mechanical) system is. In our case, it's wagons or wagons + engine? Note that it wouldn't make
    difference as to acceleration, which is the same for all parts of the train, but isn't by no means the same if forces are concerned. Consider the two choices:



    a) The system consists of wagons alone. Then it makes sense to say that engine (which doesn't belong to the system) applies a given force $F$ to the system and compute acceleration as $a=F/m$, where
    $m=10000,rm kg$. Given the book's answer, this isn't the author's choice.



    b) The system consists of the whole train, engine included. Then there are two alternatives as to the given force $F$ (here I'm reiterating)



    b1) $F$ is a force engine applies to wagons. Then it's an internal force and as such it cannot accelerate the system. Its acceleration is only due to the net external force (in computing the resultant internal forces cancel thanks to third Newton's law). Then the
    solution is nonsense.



    b2) $F$ is a force engine applies to external world. In that case it will never accelerate the system or a part of it. It could accelerate the rail, were it not firmly fixed to ground. Not to mention that a force engine applies to rail exists, but is in the wrong direction.



    So not even choice b) is acceptable. Neither as it's used in gandalf61's answer.



    I'd like to add another comment. Unfortunately "engine" in English may mean two different things: either the motor proper (electric, diesel,
    or else) which ultimately is the cause of motion - or the car carrying it. Of course the datum of mass suggests the latter interpretation. But my suspicion is that the author - maybe without realizing - thought
    of the former.



    I'm led to say so because it's a very common way of thinking about cars and other motorized vehicles. If you ask someone "which force causes a car move?" I bet you'll get as an answer "the motor's force". Nobody thinks that in strict mechanical meaning the motor can only produce internal forces and as such will never move a car by a cm. That the only external force which can put a car in motion is the road's friction on the wheels.






    share|cite|improve this answer











    $endgroup$












    • $begingroup$
      Choice b is, acceptable. You just have to go one more step and apply the law of action and reaction. The force exerted on the rails accelerates the Earth, but the reaction accelerates the train.
      $endgroup$
      – Jan Hudec
      Apr 13 at 12:18













    7












    7








    7





    $begingroup$

    IMO you're right: the problem's wording is bad. It's meaningless to say "the engine exerts a force of 40000 N". The engine interacts both with the first wagon and with the rail, exerting forces on both and these forces are different. How can we know what the book's author had in mind? If the former, your answer is right, if the latter, the book's one is right. Of course in the latter case (force exerted on rail) it's not that force which accelerates the train, but the rail's reaction.



    As a general rule we shouldn't say "A exerts a force" - much better "A exerts a force on B". Better yet "A exerts a force on point P of B". The point where a force acts can make a great difference.



    Edit



    Many things have been said but IMO it's useful to be still clearer. After further reflections I think it's not wording that's bad, but the thinking behind.



    As already stated e.g. by @Farcher in mechanics problems the first thing to be done is to make clear which the (mechanical) system is. In our case, it's wagons or wagons + engine? Note that it wouldn't make
    difference as to acceleration, which is the same for all parts of the train, but isn't by no means the same if forces are concerned. Consider the two choices:



    a) The system consists of wagons alone. Then it makes sense to say that engine (which doesn't belong to the system) applies a given force $F$ to the system and compute acceleration as $a=F/m$, where
    $m=10000,rm kg$. Given the book's answer, this isn't the author's choice.



    b) The system consists of the whole train, engine included. Then there are two alternatives as to the given force $F$ (here I'm reiterating)



    b1) $F$ is a force engine applies to wagons. Then it's an internal force and as such it cannot accelerate the system. Its acceleration is only due to the net external force (in computing the resultant internal forces cancel thanks to third Newton's law). Then the
    solution is nonsense.



    b2) $F$ is a force engine applies to external world. In that case it will never accelerate the system or a part of it. It could accelerate the rail, were it not firmly fixed to ground. Not to mention that a force engine applies to rail exists, but is in the wrong direction.



    So not even choice b) is acceptable. Neither as it's used in gandalf61's answer.



    I'd like to add another comment. Unfortunately "engine" in English may mean two different things: either the motor proper (electric, diesel,
    or else) which ultimately is the cause of motion - or the car carrying it. Of course the datum of mass suggests the latter interpretation. But my suspicion is that the author - maybe without realizing - thought
    of the former.



    I'm led to say so because it's a very common way of thinking about cars and other motorized vehicles. If you ask someone "which force causes a car move?" I bet you'll get as an answer "the motor's force". Nobody thinks that in strict mechanical meaning the motor can only produce internal forces and as such will never move a car by a cm. That the only external force which can put a car in motion is the road's friction on the wheels.






    share|cite|improve this answer











    $endgroup$



    IMO you're right: the problem's wording is bad. It's meaningless to say "the engine exerts a force of 40000 N". The engine interacts both with the first wagon and with the rail, exerting forces on both and these forces are different. How can we know what the book's author had in mind? If the former, your answer is right, if the latter, the book's one is right. Of course in the latter case (force exerted on rail) it's not that force which accelerates the train, but the rail's reaction.



    As a general rule we shouldn't say "A exerts a force" - much better "A exerts a force on B". Better yet "A exerts a force on point P of B". The point where a force acts can make a great difference.



    Edit



    Many things have been said but IMO it's useful to be still clearer. After further reflections I think it's not wording that's bad, but the thinking behind.



    As already stated e.g. by @Farcher in mechanics problems the first thing to be done is to make clear which the (mechanical) system is. In our case, it's wagons or wagons + engine? Note that it wouldn't make
    difference as to acceleration, which is the same for all parts of the train, but isn't by no means the same if forces are concerned. Consider the two choices:



    a) The system consists of wagons alone. Then it makes sense to say that engine (which doesn't belong to the system) applies a given force $F$ to the system and compute acceleration as $a=F/m$, where
    $m=10000,rm kg$. Given the book's answer, this isn't the author's choice.



    b) The system consists of the whole train, engine included. Then there are two alternatives as to the given force $F$ (here I'm reiterating)



    b1) $F$ is a force engine applies to wagons. Then it's an internal force and as such it cannot accelerate the system. Its acceleration is only due to the net external force (in computing the resultant internal forces cancel thanks to third Newton's law). Then the
    solution is nonsense.



    b2) $F$ is a force engine applies to external world. In that case it will never accelerate the system or a part of it. It could accelerate the rail, were it not firmly fixed to ground. Not to mention that a force engine applies to rail exists, but is in the wrong direction.



    So not even choice b) is acceptable. Neither as it's used in gandalf61's answer.



    I'd like to add another comment. Unfortunately "engine" in English may mean two different things: either the motor proper (electric, diesel,
    or else) which ultimately is the cause of motion - or the car carrying it. Of course the datum of mass suggests the latter interpretation. But my suspicion is that the author - maybe without realizing - thought
    of the former.



    I'm led to say so because it's a very common way of thinking about cars and other motorized vehicles. If you ask someone "which force causes a car move?" I bet you'll get as an answer "the motor's force". Nobody thinks that in strict mechanical meaning the motor can only produce internal forces and as such will never move a car by a cm. That the only external force which can put a car in motion is the road's friction on the wheels.







    share|cite|improve this answer














    share|cite|improve this answer



    share|cite|improve this answer








    edited Apr 12 at 13:32

























    answered Apr 12 at 11:49









    Elio FabriElio Fabri

    3,7281214




    3,7281214











    • $begingroup$
      Choice b is, acceptable. You just have to go one more step and apply the law of action and reaction. The force exerted on the rails accelerates the Earth, but the reaction accelerates the train.
      $endgroup$
      – Jan Hudec
      Apr 13 at 12:18
















    • $begingroup$
      Choice b is, acceptable. You just have to go one more step and apply the law of action and reaction. The force exerted on the rails accelerates the Earth, but the reaction accelerates the train.
      $endgroup$
      – Jan Hudec
      Apr 13 at 12:18















    $begingroup$
    Choice b is, acceptable. You just have to go one more step and apply the law of action and reaction. The force exerted on the rails accelerates the Earth, but the reaction accelerates the train.
    $endgroup$
    – Jan Hudec
    Apr 13 at 12:18




    $begingroup$
    Choice b is, acceptable. You just have to go one more step and apply the law of action and reaction. The force exerted on the rails accelerates the Earth, but the reaction accelerates the train.
    $endgroup$
    – Jan Hudec
    Apr 13 at 12:18











    4












    $begingroup$

    You have to add mass of engine also.The force is applied on whole system.What will be the acceleration of only engine if you remove wagons?You will consider it's mass also.






    share|cite|improve this answer









    $endgroup$








    • 7




      $begingroup$
      "The force is applied on whole system." That's NOT what the words of the problem say. The engine exerts a force---that must be on something else. In this type of analysis, things don't have self-forces. It's a terrible question.
      $endgroup$
      – Bill N
      Apr 12 at 11:49






    • 1




      $begingroup$
      @Bill N: The engine exerts a force on the TRACK, which causes it to accelerate. Since the engine is connected to the cars, it must accelerate them as well, so the mass being accelerated is engine + cars.
      $endgroup$
      – jamesqf
      Apr 12 at 15:45










    • $begingroup$
      @jamesqf The engine also exerts a force on the tracks due to gravity. Since we were just given total force exerted by the engine on the tracks, don't forget to subtract the gravity portion when calculating the force accelerating the train.
      $endgroup$
      – Matt
      Apr 12 at 16:20










    • $begingroup$
      @Matt As long as we're being pedantic, they don't say which planet this train is on, or if it's outer space, so the gravitational force is undefined and the question is unsolvable.
      $endgroup$
      – Nuclear Wang
      Apr 12 at 18:26






    • 1




      $begingroup$
      @NuclearWang Good point! But I disagree that accounting for gravity is pedantic. (Anyway, assuming earth is a pretty standard assumption for entry level physics) The question doesnt specify what the 40kN is exerted on. It could reasonably be on the first wagon in the line, or it could be the tracks. But in fact neither of these are what the "correct" answer assumes. I dont think its fair to expect arbitrary assumptions while also expecting the OP to ignore a very real, very important, force. Especially since the engine apparently exerts a net 40 kN on presisely zero objects.
      $endgroup$
      – Matt
      Apr 12 at 18:32















    4












    $begingroup$

    You have to add mass of engine also.The force is applied on whole system.What will be the acceleration of only engine if you remove wagons?You will consider it's mass also.






    share|cite|improve this answer









    $endgroup$








    • 7




      $begingroup$
      "The force is applied on whole system." That's NOT what the words of the problem say. The engine exerts a force---that must be on something else. In this type of analysis, things don't have self-forces. It's a terrible question.
      $endgroup$
      – Bill N
      Apr 12 at 11:49






    • 1




      $begingroup$
      @Bill N: The engine exerts a force on the TRACK, which causes it to accelerate. Since the engine is connected to the cars, it must accelerate them as well, so the mass being accelerated is engine + cars.
      $endgroup$
      – jamesqf
      Apr 12 at 15:45










    • $begingroup$
      @jamesqf The engine also exerts a force on the tracks due to gravity. Since we were just given total force exerted by the engine on the tracks, don't forget to subtract the gravity portion when calculating the force accelerating the train.
      $endgroup$
      – Matt
      Apr 12 at 16:20










    • $begingroup$
      @Matt As long as we're being pedantic, they don't say which planet this train is on, or if it's outer space, so the gravitational force is undefined and the question is unsolvable.
      $endgroup$
      – Nuclear Wang
      Apr 12 at 18:26






    • 1




      $begingroup$
      @NuclearWang Good point! But I disagree that accounting for gravity is pedantic. (Anyway, assuming earth is a pretty standard assumption for entry level physics) The question doesnt specify what the 40kN is exerted on. It could reasonably be on the first wagon in the line, or it could be the tracks. But in fact neither of these are what the "correct" answer assumes. I dont think its fair to expect arbitrary assumptions while also expecting the OP to ignore a very real, very important, force. Especially since the engine apparently exerts a net 40 kN on presisely zero objects.
      $endgroup$
      – Matt
      Apr 12 at 18:32













    4












    4








    4





    $begingroup$

    You have to add mass of engine also.The force is applied on whole system.What will be the acceleration of only engine if you remove wagons?You will consider it's mass also.






    share|cite|improve this answer









    $endgroup$



    You have to add mass of engine also.The force is applied on whole system.What will be the acceleration of only engine if you remove wagons?You will consider it's mass also.







    share|cite|improve this answer












    share|cite|improve this answer



    share|cite|improve this answer










    answered Apr 12 at 10:15







    user227513














    • 7




      $begingroup$
      "The force is applied on whole system." That's NOT what the words of the problem say. The engine exerts a force---that must be on something else. In this type of analysis, things don't have self-forces. It's a terrible question.
      $endgroup$
      – Bill N
      Apr 12 at 11:49






    • 1




      $begingroup$
      @Bill N: The engine exerts a force on the TRACK, which causes it to accelerate. Since the engine is connected to the cars, it must accelerate them as well, so the mass being accelerated is engine + cars.
      $endgroup$
      – jamesqf
      Apr 12 at 15:45










    • $begingroup$
      @jamesqf The engine also exerts a force on the tracks due to gravity. Since we were just given total force exerted by the engine on the tracks, don't forget to subtract the gravity portion when calculating the force accelerating the train.
      $endgroup$
      – Matt
      Apr 12 at 16:20










    • $begingroup$
      @Matt As long as we're being pedantic, they don't say which planet this train is on, or if it's outer space, so the gravitational force is undefined and the question is unsolvable.
      $endgroup$
      – Nuclear Wang
      Apr 12 at 18:26






    • 1




      $begingroup$
      @NuclearWang Good point! But I disagree that accounting for gravity is pedantic. (Anyway, assuming earth is a pretty standard assumption for entry level physics) The question doesnt specify what the 40kN is exerted on. It could reasonably be on the first wagon in the line, or it could be the tracks. But in fact neither of these are what the "correct" answer assumes. I dont think its fair to expect arbitrary assumptions while also expecting the OP to ignore a very real, very important, force. Especially since the engine apparently exerts a net 40 kN on presisely zero objects.
      $endgroup$
      – Matt
      Apr 12 at 18:32












    • 7




      $begingroup$
      "The force is applied on whole system." That's NOT what the words of the problem say. The engine exerts a force---that must be on something else. In this type of analysis, things don't have self-forces. It's a terrible question.
      $endgroup$
      – Bill N
      Apr 12 at 11:49






    • 1




      $begingroup$
      @Bill N: The engine exerts a force on the TRACK, which causes it to accelerate. Since the engine is connected to the cars, it must accelerate them as well, so the mass being accelerated is engine + cars.
      $endgroup$
      – jamesqf
      Apr 12 at 15:45










    • $begingroup$
      @jamesqf The engine also exerts a force on the tracks due to gravity. Since we were just given total force exerted by the engine on the tracks, don't forget to subtract the gravity portion when calculating the force accelerating the train.
      $endgroup$
      – Matt
      Apr 12 at 16:20










    • $begingroup$
      @Matt As long as we're being pedantic, they don't say which planet this train is on, or if it's outer space, so the gravitational force is undefined and the question is unsolvable.
      $endgroup$
      – Nuclear Wang
      Apr 12 at 18:26






    • 1




      $begingroup$
      @NuclearWang Good point! But I disagree that accounting for gravity is pedantic. (Anyway, assuming earth is a pretty standard assumption for entry level physics) The question doesnt specify what the 40kN is exerted on. It could reasonably be on the first wagon in the line, or it could be the tracks. But in fact neither of these are what the "correct" answer assumes. I dont think its fair to expect arbitrary assumptions while also expecting the OP to ignore a very real, very important, force. Especially since the engine apparently exerts a net 40 kN on presisely zero objects.
      $endgroup$
      – Matt
      Apr 12 at 18:32







    7




    7




    $begingroup$
    "The force is applied on whole system." That's NOT what the words of the problem say. The engine exerts a force---that must be on something else. In this type of analysis, things don't have self-forces. It's a terrible question.
    $endgroup$
    – Bill N
    Apr 12 at 11:49




    $begingroup$
    "The force is applied on whole system." That's NOT what the words of the problem say. The engine exerts a force---that must be on something else. In this type of analysis, things don't have self-forces. It's a terrible question.
    $endgroup$
    – Bill N
    Apr 12 at 11:49




    1




    1




    $begingroup$
    @Bill N: The engine exerts a force on the TRACK, which causes it to accelerate. Since the engine is connected to the cars, it must accelerate them as well, so the mass being accelerated is engine + cars.
    $endgroup$
    – jamesqf
    Apr 12 at 15:45




    $begingroup$
    @Bill N: The engine exerts a force on the TRACK, which causes it to accelerate. Since the engine is connected to the cars, it must accelerate them as well, so the mass being accelerated is engine + cars.
    $endgroup$
    – jamesqf
    Apr 12 at 15:45












    $begingroup$
    @jamesqf The engine also exerts a force on the tracks due to gravity. Since we were just given total force exerted by the engine on the tracks, don't forget to subtract the gravity portion when calculating the force accelerating the train.
    $endgroup$
    – Matt
    Apr 12 at 16:20




    $begingroup$
    @jamesqf The engine also exerts a force on the tracks due to gravity. Since we were just given total force exerted by the engine on the tracks, don't forget to subtract the gravity portion when calculating the force accelerating the train.
    $endgroup$
    – Matt
    Apr 12 at 16:20












    $begingroup$
    @Matt As long as we're being pedantic, they don't say which planet this train is on, or if it's outer space, so the gravitational force is undefined and the question is unsolvable.
    $endgroup$
    – Nuclear Wang
    Apr 12 at 18:26




    $begingroup$
    @Matt As long as we're being pedantic, they don't say which planet this train is on, or if it's outer space, so the gravitational force is undefined and the question is unsolvable.
    $endgroup$
    – Nuclear Wang
    Apr 12 at 18:26




    1




    1




    $begingroup$
    @NuclearWang Good point! But I disagree that accounting for gravity is pedantic. (Anyway, assuming earth is a pretty standard assumption for entry level physics) The question doesnt specify what the 40kN is exerted on. It could reasonably be on the first wagon in the line, or it could be the tracks. But in fact neither of these are what the "correct" answer assumes. I dont think its fair to expect arbitrary assumptions while also expecting the OP to ignore a very real, very important, force. Especially since the engine apparently exerts a net 40 kN on presisely zero objects.
    $endgroup$
    – Matt
    Apr 12 at 18:32




    $begingroup$
    @NuclearWang Good point! But I disagree that accounting for gravity is pedantic. (Anyway, assuming earth is a pretty standard assumption for entry level physics) The question doesnt specify what the 40kN is exerted on. It could reasonably be on the first wagon in the line, or it could be the tracks. But in fact neither of these are what the "correct" answer assumes. I dont think its fair to expect arbitrary assumptions while also expecting the OP to ignore a very real, very important, force. Especially since the engine apparently exerts a net 40 kN on presisely zero objects.
    $endgroup$
    – Matt
    Apr 12 at 18:32











    3












    $begingroup$

    Imagine if you only had the engine by itself exerting the same 40,000N of thrust, to find the acceleration of the engine you would not do 40000/0kg would you? The 40,000N the engine exert is also used to thrust itself forward.



    But let’s say it didn’t, and that only the wagons were pulled. Well now you have a stationary engine, pulling 5 wagons, each with an acceleration of 4m/s^2. These wagons will catch up to the engine in no time and obliterate the engine from behind. we can at least agree this is not how train works






    share|cite|improve this answer









    $endgroup$








    • 1




      $begingroup$
      If the engine is by itself,, what is exerting thrust on? It can't exert thrust on itself. There must be something else exerting thrust on the engine. Regarding your second paragraph, there is obviously some force acting on the engine, but we aren't told what it is. All we know is that the engine exerts a force of 40000 N, presumably on the train of wagons.
      $endgroup$
      – Bill N
      Apr 12 at 11:51






    • 1




      $begingroup$
      It's tricky but it says "the engine exerts a force" it does not say " the engine exerts a force on the cars". And that's the reason you include the engine! The problem is solvable for either situation.
      $endgroup$
      – PhysicsDave
      Apr 12 at 12:43










    • $begingroup$
      I do agree with Physics Dave. Though the very existence of this Q and some comments tell that the exercise could have been written more clearly.
      $endgroup$
      – Alchimista
      Apr 12 at 14:47










    • $begingroup$
      @BillN on the rails, naturally.
      $endgroup$
      – hobbs
      Apr 12 at 15:46
















    3












    $begingroup$

    Imagine if you only had the engine by itself exerting the same 40,000N of thrust, to find the acceleration of the engine you would not do 40000/0kg would you? The 40,000N the engine exert is also used to thrust itself forward.



    But let’s say it didn’t, and that only the wagons were pulled. Well now you have a stationary engine, pulling 5 wagons, each with an acceleration of 4m/s^2. These wagons will catch up to the engine in no time and obliterate the engine from behind. we can at least agree this is not how train works






    share|cite|improve this answer









    $endgroup$








    • 1




      $begingroup$
      If the engine is by itself,, what is exerting thrust on? It can't exert thrust on itself. There must be something else exerting thrust on the engine. Regarding your second paragraph, there is obviously some force acting on the engine, but we aren't told what it is. All we know is that the engine exerts a force of 40000 N, presumably on the train of wagons.
      $endgroup$
      – Bill N
      Apr 12 at 11:51






    • 1




      $begingroup$
      It's tricky but it says "the engine exerts a force" it does not say " the engine exerts a force on the cars". And that's the reason you include the engine! The problem is solvable for either situation.
      $endgroup$
      – PhysicsDave
      Apr 12 at 12:43










    • $begingroup$
      I do agree with Physics Dave. Though the very existence of this Q and some comments tell that the exercise could have been written more clearly.
      $endgroup$
      – Alchimista
      Apr 12 at 14:47










    • $begingroup$
      @BillN on the rails, naturally.
      $endgroup$
      – hobbs
      Apr 12 at 15:46














    3












    3








    3





    $begingroup$

    Imagine if you only had the engine by itself exerting the same 40,000N of thrust, to find the acceleration of the engine you would not do 40000/0kg would you? The 40,000N the engine exert is also used to thrust itself forward.



    But let’s say it didn’t, and that only the wagons were pulled. Well now you have a stationary engine, pulling 5 wagons, each with an acceleration of 4m/s^2. These wagons will catch up to the engine in no time and obliterate the engine from behind. we can at least agree this is not how train works






    share|cite|improve this answer









    $endgroup$



    Imagine if you only had the engine by itself exerting the same 40,000N of thrust, to find the acceleration of the engine you would not do 40000/0kg would you? The 40,000N the engine exert is also used to thrust itself forward.



    But let’s say it didn’t, and that only the wagons were pulled. Well now you have a stationary engine, pulling 5 wagons, each with an acceleration of 4m/s^2. These wagons will catch up to the engine in no time and obliterate the engine from behind. we can at least agree this is not how train works







    share|cite|improve this answer












    share|cite|improve this answer



    share|cite|improve this answer










    answered Apr 12 at 11:12









    Ubaid HassanUbaid Hassan

    38214




    38214







    • 1




      $begingroup$
      If the engine is by itself,, what is exerting thrust on? It can't exert thrust on itself. There must be something else exerting thrust on the engine. Regarding your second paragraph, there is obviously some force acting on the engine, but we aren't told what it is. All we know is that the engine exerts a force of 40000 N, presumably on the train of wagons.
      $endgroup$
      – Bill N
      Apr 12 at 11:51






    • 1




      $begingroup$
      It's tricky but it says "the engine exerts a force" it does not say " the engine exerts a force on the cars". And that's the reason you include the engine! The problem is solvable for either situation.
      $endgroup$
      – PhysicsDave
      Apr 12 at 12:43










    • $begingroup$
      I do agree with Physics Dave. Though the very existence of this Q and some comments tell that the exercise could have been written more clearly.
      $endgroup$
      – Alchimista
      Apr 12 at 14:47










    • $begingroup$
      @BillN on the rails, naturally.
      $endgroup$
      – hobbs
      Apr 12 at 15:46













    • 1




      $begingroup$
      If the engine is by itself,, what is exerting thrust on? It can't exert thrust on itself. There must be something else exerting thrust on the engine. Regarding your second paragraph, there is obviously some force acting on the engine, but we aren't told what it is. All we know is that the engine exerts a force of 40000 N, presumably on the train of wagons.
      $endgroup$
      – Bill N
      Apr 12 at 11:51






    • 1




      $begingroup$
      It's tricky but it says "the engine exerts a force" it does not say " the engine exerts a force on the cars". And that's the reason you include the engine! The problem is solvable for either situation.
      $endgroup$
      – PhysicsDave
      Apr 12 at 12:43










    • $begingroup$
      I do agree with Physics Dave. Though the very existence of this Q and some comments tell that the exercise could have been written more clearly.
      $endgroup$
      – Alchimista
      Apr 12 at 14:47










    • $begingroup$
      @BillN on the rails, naturally.
      $endgroup$
      – hobbs
      Apr 12 at 15:46








    1




    1




    $begingroup$
    If the engine is by itself,, what is exerting thrust on? It can't exert thrust on itself. There must be something else exerting thrust on the engine. Regarding your second paragraph, there is obviously some force acting on the engine, but we aren't told what it is. All we know is that the engine exerts a force of 40000 N, presumably on the train of wagons.
    $endgroup$
    – Bill N
    Apr 12 at 11:51




    $begingroup$
    If the engine is by itself,, what is exerting thrust on? It can't exert thrust on itself. There must be something else exerting thrust on the engine. Regarding your second paragraph, there is obviously some force acting on the engine, but we aren't told what it is. All we know is that the engine exerts a force of 40000 N, presumably on the train of wagons.
    $endgroup$
    – Bill N
    Apr 12 at 11:51




    1




    1




    $begingroup$
    It's tricky but it says "the engine exerts a force" it does not say " the engine exerts a force on the cars". And that's the reason you include the engine! The problem is solvable for either situation.
    $endgroup$
    – PhysicsDave
    Apr 12 at 12:43




    $begingroup$
    It's tricky but it says "the engine exerts a force" it does not say " the engine exerts a force on the cars". And that's the reason you include the engine! The problem is solvable for either situation.
    $endgroup$
    – PhysicsDave
    Apr 12 at 12:43












    $begingroup$
    I do agree with Physics Dave. Though the very existence of this Q and some comments tell that the exercise could have been written more clearly.
    $endgroup$
    – Alchimista
    Apr 12 at 14:47




    $begingroup$
    I do agree with Physics Dave. Though the very existence of this Q and some comments tell that the exercise could have been written more clearly.
    $endgroup$
    – Alchimista
    Apr 12 at 14:47












    $begingroup$
    @BillN on the rails, naturally.
    $endgroup$
    – hobbs
    Apr 12 at 15:46





    $begingroup$
    @BillN on the rails, naturally.
    $endgroup$
    – hobbs
    Apr 12 at 15:46












    2












    $begingroup$

    The question is flawed in that can be deemed to be ambiguous and therefore requires interpretation.



    Using Newton’s second law requires the system under consideration to be defined and that has not been done in this question.



    Without the system being defined the statement




    the engine exerts a force of 40000N




    is the cause of the ambiguity.



    So which is it?



    1 The engine is exerting an external force of 40000N on the system of five wagons.



    2 The engine exerts an internal force of 40000N on the system of five wagons and the engine.



    3 There is an external force of 40000N on the engine and five wagons.



    The author of the book really meant option 3 but given the way the question was written I have to agree with the OP that an external force of 40000N is acting on the five wagons whcich is option 1.






    share|cite|improve this answer











    $endgroup$

















      2












      $begingroup$

      The question is flawed in that can be deemed to be ambiguous and therefore requires interpretation.



      Using Newton’s second law requires the system under consideration to be defined and that has not been done in this question.



      Without the system being defined the statement




      the engine exerts a force of 40000N




      is the cause of the ambiguity.



      So which is it?



      1 The engine is exerting an external force of 40000N on the system of five wagons.



      2 The engine exerts an internal force of 40000N on the system of five wagons and the engine.



      3 There is an external force of 40000N on the engine and five wagons.



      The author of the book really meant option 3 but given the way the question was written I have to agree with the OP that an external force of 40000N is acting on the five wagons whcich is option 1.






      share|cite|improve this answer











      $endgroup$















        2












        2








        2





        $begingroup$

        The question is flawed in that can be deemed to be ambiguous and therefore requires interpretation.



        Using Newton’s second law requires the system under consideration to be defined and that has not been done in this question.



        Without the system being defined the statement




        the engine exerts a force of 40000N




        is the cause of the ambiguity.



        So which is it?



        1 The engine is exerting an external force of 40000N on the system of five wagons.



        2 The engine exerts an internal force of 40000N on the system of five wagons and the engine.



        3 There is an external force of 40000N on the engine and five wagons.



        The author of the book really meant option 3 but given the way the question was written I have to agree with the OP that an external force of 40000N is acting on the five wagons whcich is option 1.






        share|cite|improve this answer











        $endgroup$



        The question is flawed in that can be deemed to be ambiguous and therefore requires interpretation.



        Using Newton’s second law requires the system under consideration to be defined and that has not been done in this question.



        Without the system being defined the statement




        the engine exerts a force of 40000N




        is the cause of the ambiguity.



        So which is it?



        1 The engine is exerting an external force of 40000N on the system of five wagons.



        2 The engine exerts an internal force of 40000N on the system of five wagons and the engine.



        3 There is an external force of 40000N on the engine and five wagons.



        The author of the book really meant option 3 but given the way the question was written I have to agree with the OP that an external force of 40000N is acting on the five wagons whcich is option 1.







        share|cite|improve this answer














        share|cite|improve this answer



        share|cite|improve this answer








        edited Apr 12 at 15:08

























        answered Apr 12 at 11:51









        FarcherFarcher

        52.3k340110




        52.3k340110





















            2












            $begingroup$

            The force of 40 kN is exerted on the rails, not the wagons



            We have to assume that the engine and wagons are all coupled together, and therefore that they move together. If the engine exerted a force on the wagons but did not move with them, the wagons would provide a different force in reaction. If the train was off the track, it would not be exerting that force on the wagons.



            The engine turns the wheels which exert a force backwards on the rails, which also imparts the reaction forwards on the train.



            That force is transmitted from the rails through the engine and the coupling to the wagons.



            To take a different circumstance, suppose the train was going uphill? The engine will still exert a force of the same magnitude, but this time the balance of forces and angles are different, so the acceleration is different too.



            Thus that force must accelerate the total mass of the engine and the wagons together.






            share|cite|improve this answer









            $endgroup$








            • 1




              $begingroup$
              No, the question is flawed/ambiguous. When you specify "A exerts a force ...." you must say what that force is exerted on.
              $endgroup$
              – Bill N
              Apr 14 at 3:25















            2












            $begingroup$

            The force of 40 kN is exerted on the rails, not the wagons



            We have to assume that the engine and wagons are all coupled together, and therefore that they move together. If the engine exerted a force on the wagons but did not move with them, the wagons would provide a different force in reaction. If the train was off the track, it would not be exerting that force on the wagons.



            The engine turns the wheels which exert a force backwards on the rails, which also imparts the reaction forwards on the train.



            That force is transmitted from the rails through the engine and the coupling to the wagons.



            To take a different circumstance, suppose the train was going uphill? The engine will still exert a force of the same magnitude, but this time the balance of forces and angles are different, so the acceleration is different too.



            Thus that force must accelerate the total mass of the engine and the wagons together.






            share|cite|improve this answer









            $endgroup$








            • 1




              $begingroup$
              No, the question is flawed/ambiguous. When you specify "A exerts a force ...." you must say what that force is exerted on.
              $endgroup$
              – Bill N
              Apr 14 at 3:25













            2












            2








            2





            $begingroup$

            The force of 40 kN is exerted on the rails, not the wagons



            We have to assume that the engine and wagons are all coupled together, and therefore that they move together. If the engine exerted a force on the wagons but did not move with them, the wagons would provide a different force in reaction. If the train was off the track, it would not be exerting that force on the wagons.



            The engine turns the wheels which exert a force backwards on the rails, which also imparts the reaction forwards on the train.



            That force is transmitted from the rails through the engine and the coupling to the wagons.



            To take a different circumstance, suppose the train was going uphill? The engine will still exert a force of the same magnitude, but this time the balance of forces and angles are different, so the acceleration is different too.



            Thus that force must accelerate the total mass of the engine and the wagons together.






            share|cite|improve this answer









            $endgroup$



            The force of 40 kN is exerted on the rails, not the wagons



            We have to assume that the engine and wagons are all coupled together, and therefore that they move together. If the engine exerted a force on the wagons but did not move with them, the wagons would provide a different force in reaction. If the train was off the track, it would not be exerting that force on the wagons.



            The engine turns the wheels which exert a force backwards on the rails, which also imparts the reaction forwards on the train.



            That force is transmitted from the rails through the engine and the coupling to the wagons.



            To take a different circumstance, suppose the train was going uphill? The engine will still exert a force of the same magnitude, but this time the balance of forces and angles are different, so the acceleration is different too.



            Thus that force must accelerate the total mass of the engine and the wagons together.







            share|cite|improve this answer












            share|cite|improve this answer



            share|cite|improve this answer










            answered Apr 12 at 15:39









            Phil HPhil H

            900413




            900413







            • 1




              $begingroup$
              No, the question is flawed/ambiguous. When you specify "A exerts a force ...." you must say what that force is exerted on.
              $endgroup$
              – Bill N
              Apr 14 at 3:25












            • 1




              $begingroup$
              No, the question is flawed/ambiguous. When you specify "A exerts a force ...." you must say what that force is exerted on.
              $endgroup$
              – Bill N
              Apr 14 at 3:25







            1




            1




            $begingroup$
            No, the question is flawed/ambiguous. When you specify "A exerts a force ...." you must say what that force is exerted on.
            $endgroup$
            – Bill N
            Apr 14 at 3:25




            $begingroup$
            No, the question is flawed/ambiguous. When you specify "A exerts a force ...." you must say what that force is exerted on.
            $endgroup$
            – Bill N
            Apr 14 at 3:25

















            draft saved

            draft discarded
















































            Thanks for contributing an answer to Physics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid


            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.

            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fphysics.stackexchange.com%2fquestions%2f472237%2fhomework-question-about-an-engine-pulling-a-train%23new-answer', 'question_page');

            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            រឿង រ៉ូមេអូ និង ហ្ស៊ុយលីយេ សង្ខេបរឿង តួអង្គ បញ្ជីណែនាំ

            QGIS export composer to PDF scale the map [closed] Planned maintenance scheduled April 23, 2019 at 23:30 UTC (7:30pm US/Eastern) Announcing the arrival of Valued Associate #679: Cesar Manara Unicorn Meta Zoo #1: Why another podcast?Print Composer QGIS 2.6, how to export image?QGIS 2.8.1 print composer won't export all OpenCycleMap base layer tilesSave Print/Map QGIS composer view as PNG/PDF using Python (without changing anything in visible layout)?Export QGIS Print Composer PDF with searchable text labelsQGIS Print Composer does not change from landscape to portrait orientation?How can I avoid map size and scale changes in print composer?Fuzzy PDF export in QGIS running on macSierra OSExport the legend into its 100% size using Print ComposerScale-dependent rendering in QGIS PDF output

            PDF-ში გადმოწერა სანავიგაციო მენიუproject page