Definite integral giving negative value as a result? The 2019 Stack Overflow Developer Survey Results Are InWhy do I get a negative value for this integral?Solving a definite integralReal integral giving a complex resultProgression from indefinite integral to definite integral - $int_0^2pifrac15-3cos x dx$Calculation of definite integralWithout calculating the integral decide if integral is positive or negative / which integral is bigger?Definite integral of absolute value function?Variable substitution in definite integralDefinite integral over singularityInner Product, Definite Integral
How can I add encounters in the Lost Mine of Phandelver campaign without giving PCs too much XP?
How do you keep chess fun when your opponent constantly beats you?
Why doesn't shell automatically fix "useless use of cat"?
APIPA and LAN Broadcast Domain
What do hard-Brexiteers want with respect to the Irish border?
Mathematics of imaging the black hole
Is it correct to say the Neural Networks are an alternative way of performing Maximum Likelihood Estimation? if not, why?
Star Trek - X-shaped Item on Regula/Orbital Office Starbases
Did any laptop computers have a built-in 5 1/4 inch floppy drive?
How to support a colleague who finds meetings extremely tiring?
I am an eight letter word. What am I?
Did the UK government pay "millions and millions of dollars" to try to snag Julian Assange?
Getting crown tickets for Statue of Liberty
Loose spokes after only a few rides
Accepted by European university, rejected by all American ones I applied to? Possible reasons?
Is it safe to harvest rainwater that fell on solar panels?
How can I define good in a religion that claims no moral authority?
Can I have a signal generator on while it's not connected?
Is it possible for absolutely everyone to attain enlightenment?
Why doesn't UInt have a toDouble()?
Why couldn't they take pictures of a closer black hole?
Is it okay to consider publishing in my first year of PhD?
Straighten subgroup lattice
How did passengers keep warm on sail ships?
Definite integral giving negative value as a result?
The 2019 Stack Overflow Developer Survey Results Are InWhy do I get a negative value for this integral?Solving a definite integralReal integral giving a complex resultProgression from indefinite integral to definite integral - $int_0^2pifrac15-3cos x dx$Calculation of definite integralWithout calculating the integral decide if integral is positive or negative / which integral is bigger?Definite integral of absolute value function?Variable substitution in definite integralDefinite integral over singularityInner Product, Definite Integral
$begingroup$
I want to calculate definite integral
$$int_-2^-1 frac1x^2e^frac1x dx = Omega$$
$$int frac1x^2e^frac1x dx=-e^frac1x+C$$
so:
$$Omega = [-e^frac1-2]-[-e^frac1-1]=-frac1sqrte + frac1e$$
which is a negative value. I believe it should be positive.
What went wrong in the process?
calculus integration definite-integrals
$endgroup$
|
show 2 more comments
$begingroup$
I want to calculate definite integral
$$int_-2^-1 frac1x^2e^frac1x dx = Omega$$
$$int frac1x^2e^frac1x dx=-e^frac1x+C$$
so:
$$Omega = [-e^frac1-2]-[-e^frac1-1]=-frac1sqrte + frac1e$$
which is a negative value. I believe it should be positive.
What went wrong in the process?
calculus integration definite-integrals
$endgroup$
2
$begingroup$
How exactly did you go about calculating the antiderivative? Wolfram Alpha gives a much different result.
$endgroup$
– Eevee Trainer
Apr 6 at 0:14
2
$begingroup$
Your antiderivative is completely incorrect: The derivative of $e^1/x^2$ is $e^1/x^2 / (-x^3)$. The red flag that you found is indeed a correct one, and shows that your answer cannot be right. This is a good thing to check.
$endgroup$
– T. Bongers
Apr 6 at 0:15
$begingroup$
Thanks. I have fixed it now. I meant $int frac1x^2 e^frac1xdx$.
$endgroup$
– weno
Apr 6 at 0:19
5
$begingroup$
You flipped the interval's endpoints. $-2<-1$
$endgroup$
– mr_e_man
Apr 6 at 0:25
$begingroup$
And just to confirm, taking account of @mr_e_man’s comment above, your work seems correct.
$endgroup$
– Lubin
Apr 6 at 0:27
|
show 2 more comments
$begingroup$
I want to calculate definite integral
$$int_-2^-1 frac1x^2e^frac1x dx = Omega$$
$$int frac1x^2e^frac1x dx=-e^frac1x+C$$
so:
$$Omega = [-e^frac1-2]-[-e^frac1-1]=-frac1sqrte + frac1e$$
which is a negative value. I believe it should be positive.
What went wrong in the process?
calculus integration definite-integrals
$endgroup$
I want to calculate definite integral
$$int_-2^-1 frac1x^2e^frac1x dx = Omega$$
$$int frac1x^2e^frac1x dx=-e^frac1x+C$$
so:
$$Omega = [-e^frac1-2]-[-e^frac1-1]=-frac1sqrte + frac1e$$
which is a negative value. I believe it should be positive.
What went wrong in the process?
calculus integration definite-integrals
calculus integration definite-integrals
edited Apr 6 at 0:30
Eevee Trainer
10.4k31742
10.4k31742
asked Apr 6 at 0:09
wenoweno
41811
41811
2
$begingroup$
How exactly did you go about calculating the antiderivative? Wolfram Alpha gives a much different result.
$endgroup$
– Eevee Trainer
Apr 6 at 0:14
2
$begingroup$
Your antiderivative is completely incorrect: The derivative of $e^1/x^2$ is $e^1/x^2 / (-x^3)$. The red flag that you found is indeed a correct one, and shows that your answer cannot be right. This is a good thing to check.
$endgroup$
– T. Bongers
Apr 6 at 0:15
$begingroup$
Thanks. I have fixed it now. I meant $int frac1x^2 e^frac1xdx$.
$endgroup$
– weno
Apr 6 at 0:19
5
$begingroup$
You flipped the interval's endpoints. $-2<-1$
$endgroup$
– mr_e_man
Apr 6 at 0:25
$begingroup$
And just to confirm, taking account of @mr_e_man’s comment above, your work seems correct.
$endgroup$
– Lubin
Apr 6 at 0:27
|
show 2 more comments
2
$begingroup$
How exactly did you go about calculating the antiderivative? Wolfram Alpha gives a much different result.
$endgroup$
– Eevee Trainer
Apr 6 at 0:14
2
$begingroup$
Your antiderivative is completely incorrect: The derivative of $e^1/x^2$ is $e^1/x^2 / (-x^3)$. The red flag that you found is indeed a correct one, and shows that your answer cannot be right. This is a good thing to check.
$endgroup$
– T. Bongers
Apr 6 at 0:15
$begingroup$
Thanks. I have fixed it now. I meant $int frac1x^2 e^frac1xdx$.
$endgroup$
– weno
Apr 6 at 0:19
5
$begingroup$
You flipped the interval's endpoints. $-2<-1$
$endgroup$
– mr_e_man
Apr 6 at 0:25
$begingroup$
And just to confirm, taking account of @mr_e_man’s comment above, your work seems correct.
$endgroup$
– Lubin
Apr 6 at 0:27
2
2
$begingroup$
How exactly did you go about calculating the antiderivative? Wolfram Alpha gives a much different result.
$endgroup$
– Eevee Trainer
Apr 6 at 0:14
$begingroup$
How exactly did you go about calculating the antiderivative? Wolfram Alpha gives a much different result.
$endgroup$
– Eevee Trainer
Apr 6 at 0:14
2
2
$begingroup$
Your antiderivative is completely incorrect: The derivative of $e^1/x^2$ is $e^1/x^2 / (-x^3)$. The red flag that you found is indeed a correct one, and shows that your answer cannot be right. This is a good thing to check.
$endgroup$
– T. Bongers
Apr 6 at 0:15
$begingroup$
Your antiderivative is completely incorrect: The derivative of $e^1/x^2$ is $e^1/x^2 / (-x^3)$. The red flag that you found is indeed a correct one, and shows that your answer cannot be right. This is a good thing to check.
$endgroup$
– T. Bongers
Apr 6 at 0:15
$begingroup$
Thanks. I have fixed it now. I meant $int frac1x^2 e^frac1xdx$.
$endgroup$
– weno
Apr 6 at 0:19
$begingroup$
Thanks. I have fixed it now. I meant $int frac1x^2 e^frac1xdx$.
$endgroup$
– weno
Apr 6 at 0:19
5
5
$begingroup$
You flipped the interval's endpoints. $-2<-1$
$endgroup$
– mr_e_man
Apr 6 at 0:25
$begingroup$
You flipped the interval's endpoints. $-2<-1$
$endgroup$
– mr_e_man
Apr 6 at 0:25
$begingroup$
And just to confirm, taking account of @mr_e_man’s comment above, your work seems correct.
$endgroup$
– Lubin
Apr 6 at 0:27
$begingroup$
And just to confirm, taking account of @mr_e_man’s comment above, your work seems correct.
$endgroup$
– Lubin
Apr 6 at 0:27
|
show 2 more comments
1 Answer
1
active
oldest
votes
$begingroup$
What you effectively did was swap the order of evaluation for the fundamental theorem of calculus. Recall:
$$int_a^b f(x)dx = F(b) - F(a)$$
when the antiderivative of $f$ is $F$. You instead have $F(a) - F(b)$ ($a=-2,b=-1$) in this case. The end result is merely a sign error - you have precisely the negative of the answer which you should expect.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function ()
return StackExchange.using("mathjaxEditing", function ()
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
);
);
, "mathjax-editing");
StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "69"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);
else
createEditor();
);
function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);
);
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3176540%2fdefinite-integral-giving-negative-value-as-a-result%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
What you effectively did was swap the order of evaluation for the fundamental theorem of calculus. Recall:
$$int_a^b f(x)dx = F(b) - F(a)$$
when the antiderivative of $f$ is $F$. You instead have $F(a) - F(b)$ ($a=-2,b=-1$) in this case. The end result is merely a sign error - you have precisely the negative of the answer which you should expect.
$endgroup$
add a comment |
$begingroup$
What you effectively did was swap the order of evaluation for the fundamental theorem of calculus. Recall:
$$int_a^b f(x)dx = F(b) - F(a)$$
when the antiderivative of $f$ is $F$. You instead have $F(a) - F(b)$ ($a=-2,b=-1$) in this case. The end result is merely a sign error - you have precisely the negative of the answer which you should expect.
$endgroup$
add a comment |
$begingroup$
What you effectively did was swap the order of evaluation for the fundamental theorem of calculus. Recall:
$$int_a^b f(x)dx = F(b) - F(a)$$
when the antiderivative of $f$ is $F$. You instead have $F(a) - F(b)$ ($a=-2,b=-1$) in this case. The end result is merely a sign error - you have precisely the negative of the answer which you should expect.
$endgroup$
What you effectively did was swap the order of evaluation for the fundamental theorem of calculus. Recall:
$$int_a^b f(x)dx = F(b) - F(a)$$
when the antiderivative of $f$ is $F$. You instead have $F(a) - F(b)$ ($a=-2,b=-1$) in this case. The end result is merely a sign error - you have precisely the negative of the answer which you should expect.
answered Apr 6 at 0:26
Eevee TrainerEevee Trainer
10.4k31742
10.4k31742
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3176540%2fdefinite-integral-giving-negative-value-as-a-result%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
2
$begingroup$
How exactly did you go about calculating the antiderivative? Wolfram Alpha gives a much different result.
$endgroup$
– Eevee Trainer
Apr 6 at 0:14
2
$begingroup$
Your antiderivative is completely incorrect: The derivative of $e^1/x^2$ is $e^1/x^2 / (-x^3)$. The red flag that you found is indeed a correct one, and shows that your answer cannot be right. This is a good thing to check.
$endgroup$
– T. Bongers
Apr 6 at 0:15
$begingroup$
Thanks. I have fixed it now. I meant $int frac1x^2 e^frac1xdx$.
$endgroup$
– weno
Apr 6 at 0:19
5
$begingroup$
You flipped the interval's endpoints. $-2<-1$
$endgroup$
– mr_e_man
Apr 6 at 0:25
$begingroup$
And just to confirm, taking account of @mr_e_man’s comment above, your work seems correct.
$endgroup$
– Lubin
Apr 6 at 0:27