Definite integral giving negative value as a result? The 2019 Stack Overflow Developer Survey Results Are InWhy do I get a negative value for this integral?Solving a definite integralReal integral giving a complex resultProgression from indefinite integral to definite integral - $int_0^2pifrac15-3cos x dx$Calculation of definite integralWithout calculating the integral decide if integral is positive or negative / which integral is bigger?Definite integral of absolute value function?Variable substitution in definite integralDefinite integral over singularityInner Product, Definite Integral

How can I add encounters in the Lost Mine of Phandelver campaign without giving PCs too much XP?

How do you keep chess fun when your opponent constantly beats you?

Why doesn't shell automatically fix "useless use of cat"?

APIPA and LAN Broadcast Domain

What do hard-Brexiteers want with respect to the Irish border?

Mathematics of imaging the black hole

Is it correct to say the Neural Networks are an alternative way of performing Maximum Likelihood Estimation? if not, why?

Star Trek - X-shaped Item on Regula/Orbital Office Starbases

Did any laptop computers have a built-in 5 1/4 inch floppy drive?

How to support a colleague who finds meetings extremely tiring?

I am an eight letter word. What am I?

Did the UK government pay "millions and millions of dollars" to try to snag Julian Assange?

Getting crown tickets for Statue of Liberty

Loose spokes after only a few rides

Accepted by European university, rejected by all American ones I applied to? Possible reasons?

Is it safe to harvest rainwater that fell on solar panels?

How can I define good in a religion that claims no moral authority?

Can I have a signal generator on while it's not connected?

Is it possible for absolutely everyone to attain enlightenment?

Why doesn't UInt have a toDouble()?

Why couldn't they take pictures of a closer black hole?

Is it okay to consider publishing in my first year of PhD?

Straighten subgroup lattice

How did passengers keep warm on sail ships?



Definite integral giving negative value as a result?



The 2019 Stack Overflow Developer Survey Results Are InWhy do I get a negative value for this integral?Solving a definite integralReal integral giving a complex resultProgression from indefinite integral to definite integral - $int_0^2pifrac15-3cos x dx$Calculation of definite integralWithout calculating the integral decide if integral is positive or negative / which integral is bigger?Definite integral of absolute value function?Variable substitution in definite integralDefinite integral over singularityInner Product, Definite Integral










4












$begingroup$


I want to calculate definite integral



$$int_-2^-1 frac1x^2e^frac1x dx = Omega$$



$$int frac1x^2e^frac1x dx=-e^frac1x+C$$



so:



$$Omega = [-e^frac1-2]-[-e^frac1-1]=-frac1sqrte + frac1e$$



which is a negative value. I believe it should be positive.



What went wrong in the process?










share|cite|improve this question











$endgroup$







  • 2




    $begingroup$
    How exactly did you go about calculating the antiderivative? Wolfram Alpha gives a much different result.
    $endgroup$
    – Eevee Trainer
    Apr 6 at 0:14






  • 2




    $begingroup$
    Your antiderivative is completely incorrect: The derivative of $e^1/x^2$ is $e^1/x^2 / (-x^3)$. The red flag that you found is indeed a correct one, and shows that your answer cannot be right. This is a good thing to check.
    $endgroup$
    – T. Bongers
    Apr 6 at 0:15











  • $begingroup$
    Thanks. I have fixed it now. I meant $int frac1x^2 e^frac1xdx$.
    $endgroup$
    – weno
    Apr 6 at 0:19







  • 5




    $begingroup$
    You flipped the interval's endpoints. $-2<-1$
    $endgroup$
    – mr_e_man
    Apr 6 at 0:25










  • $begingroup$
    And just to confirm, taking account of @mr_e_man’s comment above, your work seems correct.
    $endgroup$
    – Lubin
    Apr 6 at 0:27















4












$begingroup$


I want to calculate definite integral



$$int_-2^-1 frac1x^2e^frac1x dx = Omega$$



$$int frac1x^2e^frac1x dx=-e^frac1x+C$$



so:



$$Omega = [-e^frac1-2]-[-e^frac1-1]=-frac1sqrte + frac1e$$



which is a negative value. I believe it should be positive.



What went wrong in the process?










share|cite|improve this question











$endgroup$







  • 2




    $begingroup$
    How exactly did you go about calculating the antiderivative? Wolfram Alpha gives a much different result.
    $endgroup$
    – Eevee Trainer
    Apr 6 at 0:14






  • 2




    $begingroup$
    Your antiderivative is completely incorrect: The derivative of $e^1/x^2$ is $e^1/x^2 / (-x^3)$. The red flag that you found is indeed a correct one, and shows that your answer cannot be right. This is a good thing to check.
    $endgroup$
    – T. Bongers
    Apr 6 at 0:15











  • $begingroup$
    Thanks. I have fixed it now. I meant $int frac1x^2 e^frac1xdx$.
    $endgroup$
    – weno
    Apr 6 at 0:19







  • 5




    $begingroup$
    You flipped the interval's endpoints. $-2<-1$
    $endgroup$
    – mr_e_man
    Apr 6 at 0:25










  • $begingroup$
    And just to confirm, taking account of @mr_e_man’s comment above, your work seems correct.
    $endgroup$
    – Lubin
    Apr 6 at 0:27













4












4








4





$begingroup$


I want to calculate definite integral



$$int_-2^-1 frac1x^2e^frac1x dx = Omega$$



$$int frac1x^2e^frac1x dx=-e^frac1x+C$$



so:



$$Omega = [-e^frac1-2]-[-e^frac1-1]=-frac1sqrte + frac1e$$



which is a negative value. I believe it should be positive.



What went wrong in the process?










share|cite|improve this question











$endgroup$




I want to calculate definite integral



$$int_-2^-1 frac1x^2e^frac1x dx = Omega$$



$$int frac1x^2e^frac1x dx=-e^frac1x+C$$



so:



$$Omega = [-e^frac1-2]-[-e^frac1-1]=-frac1sqrte + frac1e$$



which is a negative value. I believe it should be positive.



What went wrong in the process?







calculus integration definite-integrals






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Apr 6 at 0:30









Eevee Trainer

10.4k31742




10.4k31742










asked Apr 6 at 0:09









wenoweno

41811




41811







  • 2




    $begingroup$
    How exactly did you go about calculating the antiderivative? Wolfram Alpha gives a much different result.
    $endgroup$
    – Eevee Trainer
    Apr 6 at 0:14






  • 2




    $begingroup$
    Your antiderivative is completely incorrect: The derivative of $e^1/x^2$ is $e^1/x^2 / (-x^3)$. The red flag that you found is indeed a correct one, and shows that your answer cannot be right. This is a good thing to check.
    $endgroup$
    – T. Bongers
    Apr 6 at 0:15











  • $begingroup$
    Thanks. I have fixed it now. I meant $int frac1x^2 e^frac1xdx$.
    $endgroup$
    – weno
    Apr 6 at 0:19







  • 5




    $begingroup$
    You flipped the interval's endpoints. $-2<-1$
    $endgroup$
    – mr_e_man
    Apr 6 at 0:25










  • $begingroup$
    And just to confirm, taking account of @mr_e_man’s comment above, your work seems correct.
    $endgroup$
    – Lubin
    Apr 6 at 0:27












  • 2




    $begingroup$
    How exactly did you go about calculating the antiderivative? Wolfram Alpha gives a much different result.
    $endgroup$
    – Eevee Trainer
    Apr 6 at 0:14






  • 2




    $begingroup$
    Your antiderivative is completely incorrect: The derivative of $e^1/x^2$ is $e^1/x^2 / (-x^3)$. The red flag that you found is indeed a correct one, and shows that your answer cannot be right. This is a good thing to check.
    $endgroup$
    – T. Bongers
    Apr 6 at 0:15











  • $begingroup$
    Thanks. I have fixed it now. I meant $int frac1x^2 e^frac1xdx$.
    $endgroup$
    – weno
    Apr 6 at 0:19







  • 5




    $begingroup$
    You flipped the interval's endpoints. $-2<-1$
    $endgroup$
    – mr_e_man
    Apr 6 at 0:25










  • $begingroup$
    And just to confirm, taking account of @mr_e_man’s comment above, your work seems correct.
    $endgroup$
    – Lubin
    Apr 6 at 0:27







2




2




$begingroup$
How exactly did you go about calculating the antiderivative? Wolfram Alpha gives a much different result.
$endgroup$
– Eevee Trainer
Apr 6 at 0:14




$begingroup$
How exactly did you go about calculating the antiderivative? Wolfram Alpha gives a much different result.
$endgroup$
– Eevee Trainer
Apr 6 at 0:14




2




2




$begingroup$
Your antiderivative is completely incorrect: The derivative of $e^1/x^2$ is $e^1/x^2 / (-x^3)$. The red flag that you found is indeed a correct one, and shows that your answer cannot be right. This is a good thing to check.
$endgroup$
– T. Bongers
Apr 6 at 0:15





$begingroup$
Your antiderivative is completely incorrect: The derivative of $e^1/x^2$ is $e^1/x^2 / (-x^3)$. The red flag that you found is indeed a correct one, and shows that your answer cannot be right. This is a good thing to check.
$endgroup$
– T. Bongers
Apr 6 at 0:15













$begingroup$
Thanks. I have fixed it now. I meant $int frac1x^2 e^frac1xdx$.
$endgroup$
– weno
Apr 6 at 0:19





$begingroup$
Thanks. I have fixed it now. I meant $int frac1x^2 e^frac1xdx$.
$endgroup$
– weno
Apr 6 at 0:19





5




5




$begingroup$
You flipped the interval's endpoints. $-2<-1$
$endgroup$
– mr_e_man
Apr 6 at 0:25




$begingroup$
You flipped the interval's endpoints. $-2<-1$
$endgroup$
– mr_e_man
Apr 6 at 0:25












$begingroup$
And just to confirm, taking account of @mr_e_man’s comment above, your work seems correct.
$endgroup$
– Lubin
Apr 6 at 0:27




$begingroup$
And just to confirm, taking account of @mr_e_man’s comment above, your work seems correct.
$endgroup$
– Lubin
Apr 6 at 0:27










1 Answer
1






active

oldest

votes


















4












$begingroup$

What you effectively did was swap the order of evaluation for the fundamental theorem of calculus. Recall:



$$int_a^b f(x)dx = F(b) - F(a)$$



when the antiderivative of $f$ is $F$. You instead have $F(a) - F(b)$ ($a=-2,b=-1$) in this case. The end result is merely a sign error - you have precisely the negative of the answer which you should expect.






share|cite|improve this answer









$endgroup$













    Your Answer





    StackExchange.ifUsing("editor", function ()
    return StackExchange.using("mathjaxEditing", function ()
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    );
    );
    , "mathjax-editing");

    StackExchange.ready(function()
    var channelOptions =
    tags: "".split(" "),
    id: "69"
    ;
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function()
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled)
    StackExchange.using("snippets", function()
    createEditor();
    );

    else
    createEditor();

    );

    function createEditor()
    StackExchange.prepareEditor(
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader:
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    ,
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    );



    );













    draft saved

    draft discarded


















    StackExchange.ready(
    function ()
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3176540%2fdefinite-integral-giving-negative-value-as-a-result%23new-answer', 'question_page');

    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    4












    $begingroup$

    What you effectively did was swap the order of evaluation for the fundamental theorem of calculus. Recall:



    $$int_a^b f(x)dx = F(b) - F(a)$$



    when the antiderivative of $f$ is $F$. You instead have $F(a) - F(b)$ ($a=-2,b=-1$) in this case. The end result is merely a sign error - you have precisely the negative of the answer which you should expect.






    share|cite|improve this answer









    $endgroup$

















      4












      $begingroup$

      What you effectively did was swap the order of evaluation for the fundamental theorem of calculus. Recall:



      $$int_a^b f(x)dx = F(b) - F(a)$$



      when the antiderivative of $f$ is $F$. You instead have $F(a) - F(b)$ ($a=-2,b=-1$) in this case. The end result is merely a sign error - you have precisely the negative of the answer which you should expect.






      share|cite|improve this answer









      $endgroup$















        4












        4








        4





        $begingroup$

        What you effectively did was swap the order of evaluation for the fundamental theorem of calculus. Recall:



        $$int_a^b f(x)dx = F(b) - F(a)$$



        when the antiderivative of $f$ is $F$. You instead have $F(a) - F(b)$ ($a=-2,b=-1$) in this case. The end result is merely a sign error - you have precisely the negative of the answer which you should expect.






        share|cite|improve this answer









        $endgroup$



        What you effectively did was swap the order of evaluation for the fundamental theorem of calculus. Recall:



        $$int_a^b f(x)dx = F(b) - F(a)$$



        when the antiderivative of $f$ is $F$. You instead have $F(a) - F(b)$ ($a=-2,b=-1$) in this case. The end result is merely a sign error - you have precisely the negative of the answer which you should expect.







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered Apr 6 at 0:26









        Eevee TrainerEevee Trainer

        10.4k31742




        10.4k31742



























            draft saved

            draft discarded
















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid


            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.

            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3176540%2fdefinite-integral-giving-negative-value-as-a-result%23new-answer', 'question_page');

            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Crop image to path created in TikZ? Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern)Crop an inserted image?TikZ pictures does not appear in posterImage behind and beyond crop marks?Tikz picture as large as possible on A4 PageTransparency vs image compression dilemmaHow to crop background from image automatically?Image does not cropTikzexternal capturing crop marks when externalizing pgfplots?How to include image path that contains a dollar signCrop image with left size given

            រឿង រ៉ូមេអូ និង ហ្ស៊ុយលីយេ សង្ខេបរឿង តួអង្គ បញ្ជីណែនាំ

            Ромео және Джульетта Мазмұны Қысқаша сипаттамасы Кейіпкерлері Кино Дереккөздер Бағыттау мәзірі